精英家教网 > 高中数学 > 题目详情
9.过点P(-2,-4)的直线l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在直角坐标系中,以原点为极点,x轴的非负半轴为极轴建设极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),直线l与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

分析 (1)作差x-y即可把直线l的参数方程化为普通方程.曲线C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2aρcosθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$可得直角坐标方程.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入抛物线方程可得:t2-$(8\sqrt{2}+2\sqrt{2}a)$t+8a+32=0,设|PM|=t1,|PN|=t2,可得|MN|=|t2-t1|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,由于|PM|,|MN|,|PN|成等比数列,可得|MN|2=|PM||PN|,代入计算即可得出.

解答 解:(1)直线l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),消去参数t可得:x-y=2.
曲线C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2aρcosθ,可得:直角坐标方程:y2=2ax.
(2)把直线l的参数方程:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入抛物线方程:y2=2ax.
可得:t2-$(8\sqrt{2}+2\sqrt{2}a)$t+8a+32=0,
∴t1+t2=$8\sqrt{2}$+2$\sqrt{2}$a,t1t2=8a+32.
∴|PM|=t1,|PN|=t2
|MN|=|t2-t1|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(8\sqrt{2}+2\sqrt{2}a)^{2}-4(8a+32)}$,
∵|PM|,|MN|,|PN|成等比数列,
∴|MN|2=|PM||PN|,
∴$(8\sqrt{2}+2\sqrt{2}a)^{2}$-4(8a+32)=8a+32,
化为:a=1.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、等比数列的通项公式及其性质、弦长公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.计算:
(1)log2.56.25+lg$\frac{1}{100}$+ln$\sqrt{e}$+${2}^{1+lo{g}_{2}3}$
(2)0.027${\;}^{\frac{1}{3}}$-(-$\frac{1}{7}$)2+256${\;}^{\frac{3}{4}}$-3-1+(2-1)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=ax2+bx+c(a≠0),当n∈N时,数列f(n+1)-f(n)(  )
A.是等差数列B.是等比数列C.是常数列D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合P={n|n=2k-1,k∈N+,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为(  )
A.147B.140C.130D.117

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-x,其中a≠0.
(1)求f(x)的单调区间;
(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)与f(x2)互为相反数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}\right.$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=cos2θ}\end{array}\right.$(θ为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).
(I)若曲线N与曲线M只有一个公共点,求t的取值范围;
(2)当t=-2时,求曲线M上的点与曲线N上点的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标线中,以坐标原点为极点,x轴非负半轴为极轴建立坐标系.已知直线与椭圆的极坐标方程分别为l:cosθ+2sinθ=0,C:ρ2=$\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}$.
(1)求直线与椭圆的直角坐标方程;
(2)若P是椭圆C上的一个动点,求P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△OAB的边OA,OB上分别有一点P,Q,已知OP:PA=1:2,OQ:QB=3:2,连接AQ,BP,设它们交于点R,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$与$\overrightarrow{b}$表示$\overrightarrow{OR}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,过R作RH⊥AB交AB于点H,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OH}$.

查看答案和解析>>

同步练习册答案