精英家教网 > 高中数学 > 题目详情
15.函数f(x)=ax2+bx+c(a≠0),当n∈N时,数列f(n+1)-f(n)(  )
A.是等差数列B.是等比数列C.是常数列D.无法确定

分析 由已知的函数解析式可得f(n+1),f(n),作差后可得数列{f(n+1)-f(n)}的通项公式,再由等差数列的定义说明数列为等差数列.

解答 解:∵f(x)=ax2+bx+c(a≠0),
∴f(n+1)-f(n)=a(n+1)2+b(n+1)+c-an2-bn-c
=2an+a+b,
令an=2an+a+b(a≠0),
则an+1-an=2a(n+1)+a+b-2an-a-b=2a(a≠0),
则数列f(n+1)-f(n)是等差数列.
故选:A.

点评 本题考查数列递推式,考查了数列的函数特性,考查了等差关系的判定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知平面上三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$的模均为1,它们之间的夹角均为120°,求证:$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果空间4个点不共面,那么过其中任意3个点的平面共有1或4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.比较下列三个数tan(sin$\frac{π}{6}$),tan(cos$\frac{π}{6}$),tan(tan$\frac{π}{6}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和Sn=An2,且a3+a5=28,则实数A等于(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设过原点的直线1与抛物线y2=4(x-1)交于A,B两点,且以圆恰好过抛物线焦点F,求:
(1)直线1的方程
(2)|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=2${\;}^{\frac{1}{x-1}}$的定义域是{x|x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过点P(-2,-4)的直线l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在直角坐标系中,以原点为极点,x轴的非负半轴为极轴建设极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),直线l与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中,假命题是(  )
A.?x∈N*,(x-2)2>0B.?x0∈R,tanx0=2C.?x0∈R,log2x0<2D.?x∈R,3x-2>0

查看答案和解析>>

同步练习册答案