14£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨I£©ÀûÓÃcos2¦Á+sin2¦Á=1Ïû²ÎÊýµÃµ½C1µÄÆÕͨ·½³Ì£¬½«¼«×ø±ê·½³Ì×ó²àÕ¹¿ª¼´¿ÉµÃµ½Ö±½Ç×ø±ê·½³Ì£»
£¨II£©ÀûÓÃC1µÄ²ÎÊý·½³ÌÇó³öPµ½C2µÄ¾àÀ룬¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨I£©ÓÉ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.$µÃcos¦Á=$\frac{x}{\sqrt{3}}$£¬sin¦Á=y£®¡àÇúÏßC1µÄÆÕͨ·½³ÌÊÇ$\frac{{x}^{2}}{3}+{y}^{2}=1$£®
¡ß$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=4\sqrt{2}$£¬¡à¦Ñsin¦È+¦Ñcos¦È=8£®¼´x+y-8=0£®¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ìʱx+y-8=0£®
£¨II£©ÉèPµã×ø±ê£¨$\sqrt{3}cos¦Á$£¬sin¦Á£©£¬¡àPµ½Ö±ÏßC2µÄ¾àÀëd=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬
¡àµ±sin£¨¦Á+$\frac{¦Ð}{3}$£©=1ʱ£¬dÈ¡µÃ×îСֵ$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌϾàÀ빫ʽµÄ×îÖµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔڵȲîÊýÁÐ{an}ÖУ¬an£¾0£¬n=1£¬2£¬3£¬¡­£¬ÇÒÆäǰnÏîºÍSnÂú×ã4Sn=an2+2an-3£®Çó£º
£¨1£©a1µÄÖµ£»
£¨2£©ÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Éè¹ýÔ­µãµÄÖ±Ïß1ÓëÅ×ÎïÏßy2=4£¨x-1£©½»ÓÚA£¬BÁ½µã£¬ÇÒÒÔԲǡºÃ¹ýÅ×ÎïÏß½¹µãF£¬Çó£º
£¨1£©Ö±Ïß1µÄ·½³Ì
£¨2£©|AB|µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=mx3-3£¨m+1£©x2+nx£¨m£¬n¡ÊRÇÒm£¼0£©£¬ÇÒx=1ÊÇf£¨x£©µÄ¼«Öµµã£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±ÊµÊým·¢Éú±ä»¯Ê±£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃº¯Êýy=f£¨x£©£¨-1¡Üx¡Ü1£©µÄͼÏóÉÏÈÎÒâÒ»µãµÄÇÐÏßбÂÊ×ܲ»Ð¡ÓÚ3m£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Éè-2¡Üm£¼0£¬º¯Êýg£¨x£©=ln£¨x+1£©+$\frac{mx}{x+2}$£¨2¡Üx¡Ü3£©£¬Èô¶ÔÓÚÈÎÒâx1¡Ê[2£¬3]£¬×Ü´æÔÚx0¡Ê[0£¬1]£¬Ê¹µÃf£¨x0£©=g£¨x1£©³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÉè¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬Ö±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚM£¬N£®
£¨1£©Ð´³öÇúÏßCºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Èô|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÕýÈýÀâÖùA1B1C1-ABC£¬µãD£¬E·Ö±ðÊÇA1C£¬ABµÄÖе㣮
£¨1£©ÇóÖ¤£ºED¡ÎÆ½ÃæBB1C1C£»
£¨2£©ÈôAB=$\sqrt{2}$BB1£¬ÇóÖ¤£ºA1B¡ÍÆ½ÃæB1CE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈôÓÉ·½³Ìx2-y2=0ºÍx2+£¨y-b£©2=2Ëù×é³ÉµÄ·½³Ì×éÖÁ¶àÓÐÁ½×鲻ͬµÄʵÊý½â£¬ÔòʵÊýbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$b¡Ý2\sqrt{2}$»ò$b¡Ü-2\sqrt{2}$B£®b¡Ý2»òb¡Ü-2C£®-2¡Üb¡Ü2D£®$-2\sqrt{2}¡Üb¡Ü2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÃüÌ⣺¡°Èôx2£¾1£¬Ôòx£¼-1»òx£¾1¡±µÄÄæ·ñÃüÌâÊÇ£¨¡¡¡¡£©
A£®Èôx2£¾1£¬Ôò-1¡Üx¡Ü1B£®Èô-1¡Üx¡Ü1£¬Ôòx2¡Ü1
C£®Èô-1£¼x£¼1£¬Ôòx2£¼1D£®Èôx£¼-1»òx£¾1£¬Ôòx2£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼«×ø±êϵµÄ¼«µãΪֱ½Ç×ø±êϵxOyµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬÁ½ÖÖ×ø±êϵÖг¤¶Èµ¥Î»Ïàͬ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¨cos¦È+sin¦È£©£¬Ð±ÂÊΪ$\sqrt{3}$µÄÖ±Ïßl½»yÖáÓÚµãE£¨0£¬1£©£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬Ö±ÏßlµÄ²ÎÊý·½³Ì£»
£¨¢ò£©Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|EA|•|EB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸