精英家教网 > 高中数学 > 题目详情
在四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,侧棱DD1⊥平面ABCD,且AD=AA1=1,AB=2.
(Ⅰ)求证:平面BCD1⊥平面DCC1D1
(Ⅱ)求异面直线CD1与A1D所成角的余弦值.
考点:异面直线及其所成的角,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由线面垂直得DD1⊥BC,由矩形性质得DC⊥BC.由此能证明BC⊥平面DCC1D1,从而得到平面BCD1⊥平面DCC1D1
(Ⅱ)取DA,DC,DD1所在的直线为x,y,z轴,建立空间直角坐标系D-xyz,由cos<
CD1
DA1
=
CD1
DA1
|
CD1
|•|
DA1
|
,利用向量法能求出异面直线CD1与A1D所成角的余弦值.
解答: (本题满分10分)
(Ⅰ)证明:在四棱柱ABCD-A1B1C1D1中,DD1⊥平面ABCD,
∴DD1⊥BC.…(2分)
∵底面ABCD是矩形,所以DC⊥BC.
又DD1∩DC=D,∴BC⊥平面DCC1D1
又BC?面BCD1,∴平面BCD1⊥平面DCC1D1.…(5分)
(Ⅱ)解:取DA,DC,DD1所在的直线为x,y,z轴,
建立空间直角坐标系D-xyz,如图所示,
∵AD=AA1=1,AB=2,则D(0,0,0),C(0,2,0),D1(0,0,1),A1(1,0,1),…(7分)
CD1
=(0,-2,1),
DA1
=(1,0,1),
cos<
CD1
DA1
=
CD1
DA1
|
CD1
|•|
DA1
|
=
1
5
2
=
10
10
.…(9分)
∴异面直线CD1与A1D所成角的余弦值是
10
10
.…(10分)
点评:本题考查面面垂直的证明,考查异面直线所成角的求法,是中档题题,解题时要注意线线、线面、面面间的位置关系和性质的合理运用,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若有
a+b
2b
=cos2
c
2
,则△ABC是
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-ax-1,在[-1,2]上单调,则实数a的取值范围是(  )
A、[-4,8]
B、(-∞,-4]
C、[8,+∞]
D、(-∞,-4]∪[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥AB,PA⊥AC,E是PC的中点,已知AB=2,AD=PA=2,求异面直线BC与AE所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,BC与C1D1所成的角的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-a
2
x2+ax-lnx(a∈R).
(Ⅰ)当a=3时,求函数f(x)的极值;
(Ⅱ)当a>1,讨论函数f(x)的单调性;
(Ⅲ)对任意x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
<2+a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2ax+3ln(2x+1)在(0,+∞)上是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义|
a1a2
a3a4
|=a1a4-a2a3,若函数f(x)=|
2sinx
2
sinx
2
sinxcosx
|,给出下列四个命题:
①f(x)在区间[
π
8
8
]上是减函数;
②f(x)关于(
8
,0)中心对称;
③y=f(x)的表达式可改写成y=
2
cos(2x-
π
4
)-1;
④由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=
2
,|
a
-
b
|=
5
,(
a
b
)=
π
4
,则|
b
|等于(  )
A、2
B、
3
C、3
D、2
2

查看答案和解析>>

同步练习册答案