精英家教网 > 高中数学 > 题目详情
7.函数y=sin2xcos2x的最小值是-$\frac{1}{2}$.

分析 利用二倍角的正弦公式化简函数的解析式,再利用正弦函数的值域,求得函数的最小值.

解答 解:函数y=sin2xcos2x=$\frac{1}{2}$sin4x,
故它的最小值为-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题主要考查二倍角的正弦公式,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.$\underset{lim{n}^{2}}{n→∞}$[$\frac{100}{n}$-($\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+100}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=-2x2-kx+8在区间[1,2]上是单调函数,则k的取值范围是(  )
A.(-∞,-8]B.[-8,-4]C.(-∞,4]∪[8,+∞)D.(-∞,-8]∪[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|y=$\frac{1}{\sqrt{4-2x}}$+1},集合N={y|y=-x2+4x-2},则集合M与集合N的关系为(  )
A.M?NB.M?NC.M=ND.M?N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知直线a∥平面α,在平面α内有一动点P,点A是定直线a上定点,且AP与a所成角为θ(θ为锐角),点A到平面α距离为d,则动点P的轨迹方程为(  )
A.tan2θx2+y2=d2B.tan2θx2-y2=d2C.${y^2}=2d(x-\frac{d}{tanθ})$D.${y^2}=-2d(x-\frac{d}{tanθ})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且$\overrightarrow{ME}•\overrightarrow{MF}$=0,则△MEF的面积的取值范围为(  )
A.$[{1,\frac{5}{4}}]$B.[1,2]C.$[{\frac{1}{2},\frac{5}{4}}]$D.$[{\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设A={x||x-1|>2},B={x||x-5|<k},若A∪B=A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,已知AB=4,AC=6,A=60°.
(1)求BC的长;
(2)求sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a=$\sqrt{2}$,A=$\frac{π}{4}$,B=$\frac{π}{3}$,则b等于(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案