精英家教网 > 高中数学 > 题目详情
15.若AB为经过抛物线y2=4x焦点的弦,且AB=4,O为坐标原点,则△OAB的面积等于2.

分析 由于AB为经过抛物线y2=4x焦点的弦,且|AB|=4=2p,可得AB⊥x轴,即可得出△OAB的面积.

解答 解:∵AB为经过抛物线y2=4x焦点的弦,且|AB|=4=2p,
∴AB⊥x轴,
∴S△OAB=$\frac{1}{2}×\frac{p}{2}×|AB|$=$\frac{1}{2}×\frac{2}{2}×4$=2,
故答案为:2.

点评 本题考查了抛物线的定义标准方程及其性质、焦点弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{x}^{2}}{lnx}$
(1)求f(x)的单调区间;
(2)若方程g(x)=tf(x)-x在[$\frac{1}{e}$,1]∪(1,e2]上有两个零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足a1=1,a2=2,an=$\frac{{a}_{n+1}}{{a}_{n+2}}$(a≥3且a∈N+),求a7的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个棱台被平行于底面的平面所截,若上底底面面积、截面面积与下底底面面积之比为4:9:16,则此棱台的侧棱被分成上下两部分之比为1:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,ABCD为矩形,∠APD=90°,面PAD⊥面ABCD,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件,分别求抛物线的标准方程.
(1)顶点在原点,准线方程为y=-1;
(2)顶点在原点,对称轴是x轴,并经过点P(-3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线y=kx-2与抛物线y2=8x交于A、B两点,若线段AB的中点的横坐标是2,则弦AB的长为2$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)的定义域为R,f(x)的导函数f′(x)的图象如图所示,则下列结论一定成立的是(  )
A.函数f(x)在x=4处取得极值B.f(1)>f(2)
C.函数f(x)的最小值为0D.f(2)-f(1)<f′(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在所有首位不为0的八位数电话号码中,任取一个电话号码,求:
(1)头两位数码都是8的概率;
(2)头两位数码至少有一个不超过8的概率;
(3)头两位数码不相同的概率.

查看答案和解析>>

同步练习册答案