分析 利用函数是偶函数,通过x>0求出f(x)的零点,画出函数的图象,判断x>0时由5个零点,推出结果即可.
解答
解:当x≥0时,f(x)=2a|x-1|-a=a(2|x-1|-1)=0,可得2|x-1|-1=0,解得x=$\frac{1}{2}$或x=$\frac{3}{2}$,
∵f(x)是偶函数,∴当x<0时,f(x)=0的另外两个解为:$-\frac{1}{2}$和$-\frac{3}{2}$,由选项可得a>0,
作出函数的图象如图:
设t=f(x),则有y=f(f(x))=0得,f(t)=0,
可得t=$±\frac{1}{2}$或$±\frac{3}{2}$,
∵f(x)是偶函数,
∴要使函数y=f(f(x))恰有10个零点,
则等价于x>0时,y=f(f(x))恰有5个零点,有函数的图象可得:$\left\{\begin{array}{l}{\frac{1}{2}<a}\\{\frac{3}{2}>a}\end{array}\right.$,即$\frac{1}{2}<a<\frac{3}{2}$.
故答案为:$(\frac{1}{2},\frac{3}{2})$.
点评 本题考查函数的单调性,考查函数的零点,考查函数的周期性与奇偶性,利用数形结合的思想来求解,会化难为易.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | h(t)=$sint,t∈[{0,\frac{π}{2}}]$ | B. | h(t)=sint,t∈[0,π] | ||
| C. | h(t)=sint,t∈[-$\frac{π}{2}$,$\frac{π}{2}$] | D. | h(t)=$\frac{1}{2}$sint,t∈[0,2π] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平行移动$\frac{1}{2}$个长度单位 | B. | 向右平行移动$\frac{1}{2}$个长度单位 | ||
| C. | 向左平行移动1个长度单位 | D. | 向右平行移动1个长度单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 7或-8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com