| A. | h(t)=$sint,t∈[{0,\frac{π}{2}}]$ | B. | h(t)=sint,t∈[0,π] | ||
| C. | h(t)=sint,t∈[-$\frac{π}{2}$,$\frac{π}{2}$] | D. | h(t)=$\frac{1}{2}$sint,t∈[0,2π] |
分析 采用换元法,函数用x=h(t)代换,首先求出x的定义域,将原函数的值域转化为三角函数的值域问题,对三角函数式进行变形化简后,求出三角函数的定义域,得到本题结论.
解答 解:函数$f(x)=x+\sqrt{1-{x^2}}$的定义域为{x|-1≤x≤1}.
当x=h(t)时,其:-1≤h(t)≤1,
则有:h(t)=sint:
可得:-1≤sint≤1,
∴t∈[-$\frac{π}{2}$,$\frac{π}{2}$]
故选C.
点评 本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\sqrt{5},2\sqrt{5}}]$ | B. | $[{\sqrt{10},2\sqrt{5}}]$ | C. | $[{\sqrt{10},4\sqrt{5}}]$ | D. | $[{2\sqrt{5},4\sqrt{5}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com