精英家教网 > 高中数学 > 题目详情
如图,AB是圆O的弦,CD是AB的垂直平分线,切线AE与DC的延长线相交于E.若AB=24,AE=20,则圆O的半径R=
 
考点:与圆有关的比例线段
专题:直线与圆
分析:设AB∩CD=F,连结OA,由已知条件推导出△AFE∽△OAE,从而得到
AF
OA
=
EF
AE
,由此根据题设条件能求出圆O的半径R.
解答: 解:设AB∩CD=F,连结OA,
∵AB是圆O的弦,CD是AB的垂直平分线,
切线AE与DC的延长线相交于E,
∴∠AFE=∠OAE=90°,∠E=∠E,
∴△AFE∽△OAE,
AF
OA
=
EF
AE

∵AB=24,AE=20,
∴AF=
1
2
AB
=12,EF=
202-122
=16,
∴OA=
AE•AF
EF
=
20•12
16
=15.
故答案为:15.
点评:本题考查圆的半径长的求法,是中档题,解题时要注意垂径定理、切线性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(bsin
x
2
,acos
x
2
),
n
=(cos
x
2
,-cos
x
2
),f(x)=
m
n
+a,其中a,b,x∈R.且满足f(
π
3
)=2,f′(0)=
3

(Ⅰ)求a,b的值;
(Ⅱ)若关于x的方程f(x)-log 
1
3
k=0在区间[0,π]上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C所对的边分别是a,b,c,且2bcosC=2a-c.
(Ⅰ)求角B的大小;
(Ⅱ)若sinAsinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)的极大值为
4
27
,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=
f(x), x<1
g(x), x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.
(Ⅰ)求甲同学未选中E高校且乙、丙都选中E高校的概率;
(Ⅱ)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的值域为[
1
2
,3],则函数y=
1
f(x)
的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆的内接四边形ABCD中,∠ABC=90°,∠ABD=30°,∠BDC=45°,AD=1,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设(2x+1)5+(x-2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,右顶点为A,其长轴长是焦距的4倍,且抛物线y2=6x的焦点平分线段AF,则椭圆C的方程为(  )
A、
x2
4
+
y2
3
=1
B、
x2
4
+
4y2
15
=1
C、
x2
16
+
y2
15
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

同步练习册答案