精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$|\begin{array}{l}{\sqrt{3}co{s}^{2}x}&{-sinx}\\{cosx}&{1}\end{array}|$.
(1)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=$\sqrt{3}$,a=4,b+c=5,求△ABC的面积.

分析 (1)由已知利用行列式的计算,三角函数恒等变换的应用化简可得函数解析式f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,结合范围2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],利用正弦函数的性质即可得解值域.
(2)由已知可求sin(A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,结合范围A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),可得A=$\frac{π}{3}$,由余弦定理解得:bc=3,利用三角形面积公式即可计算得解.

解答 (本题满分为14分,第1小题满分为6分,第2小题满分为8分)
解:(1)∵f(x)=$|\begin{array}{l}{\sqrt{3}co{s}^{2}x}&{-sinx}\\{cosx}&{1}\end{array}|$=$\sqrt{3}$cos2x+sinxcosx=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∵x∈[0,$\frac{π}{2}$],2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],可得:f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$∈[0,1+$\frac{\sqrt{3}}{2}$].
(2)∵f($\frac{A}{2}$)=sin(A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,可得:sin(A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∵A∈(0,π),A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),可得:A+$\frac{π}{3}$=$\frac{2π}{3}$,解得:A=$\frac{π}{3}$.
∵a=4,b+c=5,
∴由余弦定理a2=b2+c2-2bccosA,可得:16=b2+c2-bc=(b+c)2-3bc=25-3bc,解得:bc=3,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×$3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.

点评 本题主要考查了行列式的计算,三角函数恒等变换的应用,正弦函数的图象和性质,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.试用集合A,B的交集、并集、补集表示图中阴影部分所表示的集合(  )
A.UBB.A∩(∁UB)C.A∪(∁UB)D.U(A∩B)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),左右焦点分别为F1,F2,C的离心率e=$\frac{{\sqrt{3}}}{2}$,且过P($\sqrt{3},\frac{1}{2}$)点
(1)求椭圆C的方程;
(2)若Q点在椭圆C上,且$∠Q{F_1}F_2^{\;}$=30°,求△QF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若-$\frac{π}{2}$<a<$\frac{π}{2}$,sinα=$\frac{3}{5}$,则cot2α=$\frac{7}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设无穷等比数列{an}的首项为a1,公比为q,前n项和为Sn,则“a1+q=1”是“$\underset{lim}{n→∞}$Sn=1”成立(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是二次函数,以下4种说法:
①对于任意的非零实数m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是{1,2};
②对于任意的非零实数m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是{1,4};
③对于任意的非零实数m,n,p,关于x的方程m|f(x)|2+n|f(x)|+p=0的解集都不可能是{1,2,3,4}

④对于任意的非零实数m,n,p,关于x的方程m|f(x)|2+n|f(x)|+p=0的解集都不可能是{1,4,16,64}.
正确的是①②③.(写出所有正确的代号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若4x+4-x=$\frac{10}{3}$,则xlog34=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆心(2,-3),一条直径的两个端点恰好在两坐标轴上,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号.正在该海域执行护航任务的海军“黄山”舰在A处获悉后,即测出该商船在方位角为45°距离10海里的C处,并沿方位角为105°的方向,以9海里/时的速度航行.“黄山”舰立即以21海里/时的速度前去营救.如图所示,求“黄山”舰靠近商船所需要的最少时间及所经过的路程.

查看答案和解析>>

同步练习册答案