精英家教网 > 高中数学 > 题目详情
3.设定义在(0,+∞)上的单调函数f(x)对任意的x∈(0,+∞)都有f(f(x)-log2x)=6,则不等式f(a2+a)>5的解集为(  )
A.{a|a>1}B.{a|a<-2或a>1}C.{a|-2<a<1}D.{a|a<-2}

分析 由题意可得f(x)-log2x为定值,设为t,代入可得t=4,进而可得函数的解析式,由不等式f(a2+a)>5,得${log}_{2}^{{a}^{2}+a}$>1=${log}_{2}^{2}$,解出即可.

解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-log2x为定值,
设t=f(x)-log2x,则f(x)=t+log2x,
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,
由不等式f(a2+a)>5,
得:4+${log}_{2}^{{a}^{2}+a}$>5,
∴${log}_{2}^{{a}^{2}+a}$>1=${log}_{2}^{2}$,
∴a2+a>2,解得:a>1或a<-2,
故选:B.

点评 本题考查求函数的表达式问题,考察转化思想,属中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.正方体的全面积是12,则这个正方体的外接球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如果实数x,y满足等式(x一2)2+y2=1,尝试分析以下式子是否有最值,如果有,最值是多少?
(1)$\frac{y}{x}$;
(2)x2+y2
(3)x十y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数z=cosθ+isinθ(θ∈R),求|z+2i|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断函数y=sin($\frac{5π}{2}$-x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,a=15,b=10,A=60°,CE、CF三等分∠C,求CE、CF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.说出下列各符号所表示的关系:
(1)p∈平面AC;
(2)A∈平面α,B∈平面α;
(3)a⊆平面α;
(4)平面α∩平面β=AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}满足,若${a_2}^2+{a_5}^2=5$,则S7的最大值是$\frac{35}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义域为R的函数f(x)满足:①x∈(0,1]时,f(x)=2x-1;②对任意x∈R均有f(x+1)=2f(x).定义[x]是不超过x的最大整数,如[-0.1]=-1,[1.2]=1,g(x)=$\frac{[x]}{x}$.
(1)求f(2)的值;
(2)求函数f(x)在(1,2]上的解析式;
(3)设不等式f(x)≤8在区间(-∞,a]上恒成立时a的最大值为M,且函数h(x)=g(x)-t(x∈(0,M])仅有三个零点,求实数t的取值范围.

查看答案和解析>>

同步练习册答案