精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3-数学公式x2+b,(x∈R).
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求a的值;
(2)若a>0,b=2,当x∈[-1,1]时,求f(x)的最小值.

解:(1)f′(x)=3ax2-3x,f′(2)=6得a=1
由切线方程y=6x-8得f(2)=4;
又f(2)=8a-6+b=b+2,所以b=2
所以a=1,b=2
(2)f(x)=ax3-x2+2
f′(x)=3ax2-3x=3x(ax-1).令f′(x)=0,解得x=0或x=
以下分两种情况讨论:
①若>1即0<a<1,当x变化时,f’(x),f(x)的变化情况如下表:
X(-1,0)0(0,1)
f′(x)+0-
f(x)极大值
f(-1)=-a-+2,f(1)=a-+2
所以 f(x)min=f(-1)=-a
②若0<<1即a<1.当x变化时,f′(x),f(x)的变化情况如下表:
X(-1,0)0(0,,1)
f’(x)+0-0+
f(x)极大值极小值
f(-1)=-a,f()=2-
而f()-f(-1)=2--(-a)=+a->0
所以f(x)min=f(-1)=-a
综合①和②得:f(x)min=f(-1)=-a.
分析:(1)根据导数的几何意义可知在x处的导数等于切线的斜率,建立等式关系,求出切点的横坐标,代入函数关系式,求出切点坐标,最后利用点斜式方程写出切线方程即可.
(2)先求导f′(x)=3ax2-3x=3x(ax-1).再对a进行分类讨论:当>1,当0<<1;分别求得f(x)在区间[-1,1]上的最小值即可.
点评:本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、利用导数求闭区间上函数的最值等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案