精英家教网 > 高中数学 > 题目详情
如图,抛物线y2=4x的焦点为F,准线为l,经过F且斜率为
3
的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是______.
由抛物线的定义可得AF=AK,∵AF的斜率等于
3
,∴AF的倾斜角等于60°,∵AK⊥l,
∴∠FAK=60°,故△AKF为等边三角形.又焦点F(1,0),AF的方程为 y-0=
3
(x-1),
设A(m,
3
m-
3
),m>1,由AF=AK 得
(m-1)2+(
3
m-
3
)
2
=m+1,
∴m=3,故等边三角形△AKF的边长AK=m+1=4,
∴△AKF的面积是
1
2
×4×4sin60°=4
3

故答案为4
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设椭圆
x2
a2
+
y2
b2
=1
的一个焦点与抛物线y=
1
8
x2
的焦点相同,离心率为
1
2
,则椭圆的方程为(  )
A.
x2
12
+
y2
16
=1
B.
x2
16
+
y2
12
=1
C.
x2
48
+
y2
64
=1
D.
x2
64
+
y2
48
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线x2=2py的焦点坐标为(0,1),则准线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,点P在抛物线上,若PF=2,则点P到抛物线顶点O的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有______个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程mx+ny2=0与mx2+ny2=1,(m,n∈R)且mn≠0在同一坐标系中所表示的曲线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是(  )
A.x2=
8
3
3
y
B.x2=
16
3
3
y
C.x2=8yD.x2=16y

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个酒杯的轴截面是抛物线x2=2y(0≤y<15)的一部分,若在杯內放入一个半径为3的玻璃球,则球的最高点与杯底的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点O,焦点在x轴上的抛物线过点(3,
6
)

(1)求抛物线的标准方程;
(2)若抛物线与直线y=x-2交于A、B两点,求证:kOA•kOB=-4.

查看答案和解析>>

同步练习册答案