精英家教网 > 高中数学 > 题目详情
11.如图,四棱锥P-ABCD中,ABCD是边长为2的菱形,且∠BAD=60°,PA⊥PC,
PB=PD,二面角P-BD-A为60°,则|PC|=(  )
A.3$\sqrt{2}$B.3$\sqrt{3}$C.3D.2

分析 连接AC,AC∩BD=O,则BD⊥AC,求出∠POA=60°,利用PA⊥PC,可得∠PAC=60°,PC=ACsin60°,求出AC,即可得出结论.

解答 解:连接AC,AC∩BD=O,则BD⊥AC,
∵PB=PD,∴BD⊥PO,
∵二面角P-BD-A为60°,
∴∠POA=60°,
∵PA⊥PC,
∴∠PAC=60°,
∴PC=ACsin60°,
∵ABCD是边长为2的菱形,且∠BAD=60°,
∴AC=2$\sqrt{3}$,
∴PC=3,
故选C.

点评 本题考查二面角,考查空间距离的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆:C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{6}}{3}$,过C1的左焦点F1的直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2$\sqrt{2}$.
(1)求椭圆C1的方程;
(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=$\frac{{a}^{2}}{{b}^{2}}$|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C1:y2=2x及圆C2:(x-1)2+y2=1.点P(a,b)为C1上一点.
(Ⅰ)当a=2时,求过点P的圆C2的切线方程;
(Ⅱ)当a>2时,过点P作圆C2的两条切线l1,l2分别与y轴交于B,C两点,求△PBC的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线$\sqrt{3}$x-y-$\sqrt{3}$=0与x轴的交点为N,与抛物线y2=2px(p>0)相交于点A,与抛物线的准线相交于点B,点N为AB的中点.
(1)求抛物线的方程;
(2)过点M(m,0)(m<0)作斜率为$\frac{{\sqrt{3}}}{3}$的直线与抛物线y2=2px相交于C,D两点,F为抛物线的焦点,如果
|CD|2=$\frac{64}{13}$|FC|•|FD|,求∠CFD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{{{(2x-m)}^2}}}{2-x}$x∈(0,1],它的一个极值点是x=$\frac{1}{2}$
(Ⅰ)求m的值及f(x)在x∈(0,1]上的值域;
(Ⅱ)设函数 g(x)=ex+$\sqrt{x}$-2x,求证:函数y=f(x)与y=g(x)的图象在x∈(0,1]上没有公共点.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

已知集合,且,则的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,(-1,0),F2(1,0)为平面内的两个定点,动点P满足|PF1|+|PF2|=2$\sqrt{2}$,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$.试探究:直线AB与OC的斜率之积是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,设抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l1交抛物线C于A,B两点,且|AB|=8,线段AB的中点到y轴的距离为3.直线l2与圆${x^2}+{y^2}=\frac{1}{2}$切于点P,与抛物线C切于点Q,则△FPQ的面积(  )
A.$\frac{3}{2}$B.2C.$\frac{{\sqrt{3}}}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x-5)2+y2=9的两条切线,切点为M,N,|MN|=3$\sqrt{3}$
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$(其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

同步练习册答案