19£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚµãK£¬¹ýµãK×÷Ô²£¨x-5£©2+y2=9µÄÁ½ÌõÇÐÏߣ¬ÇеãΪM£¬N£¬|MN|=3$\sqrt{3}$
£¨1£©ÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨2£©ÉèA£¬BÊÇÅ×ÎïÏßEÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£®
¢ÙÇóÖ¤£ºÖ±ÏßAB±Ø¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãQµÄ×ø±ê£»
¢Ú¹ýµãQ×÷ABµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚG£¬DÁ½µã£¬ÇóËıßÐÎAGBDÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨1£©ÇóµÃKµÄ×ø±ê£¬Ô²µÄÔ²ÐĺͰ뾶£¬ÔËÓöԳÆÐԿɵÃMRµÄ³¤£¬Óɹ´¹É¶¨ÀíºÍÈñ½ÇµÄÈý½Çº¯Êý£¬¿ÉµÃCK=6£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇóµÃp=2£¬½ø¶øµÃµ½Å×ÎïÏß·½³Ì£»
£¨2£©¢ÙÉè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨µãQ£»
¢ÚÔËÓÃÏÒ³¤¹«Ê½ºÍËıßÐεÄÃæ»ý¹«Ê½£¬»»ÔªÕûÀí£¬½áºÏ»ù±¾²»µÈʽ£¬¼´¿ÉÇóµÃ×îСֵ£®

½â´ð £¨1£©½â£ºÓÉÒÑÖª¿ÉµÃK£¨-$\frac{p}{2}$£¬0£©£¬Ô²C£º£¨x-5£©2+y2=9µÄÔ²ÐÄC£¨5£¬0£©£¬°ë¾¶r=3£®
ÉèMNÓëxÖá½»ÓÚR£¬ÓÉÔ²µÄ¶Ô³ÆÐԿɵÃ|MR|=$\frac{3\sqrt{3}}{2}$
ÓÚÊÇ|CR|=$\frac{3}{2}$£¬
¼´ÓÐ|CK|=$\frac{|MC|}{sin¡ÏMKC}=\frac{|MC|}{sin¡ÏCMR}$=6£¬
¼´ÓÐ5+$\frac{p}{2}$=6£¬½âµÃp=2£¬ÔòÅ×ÎïÏßEµÄ·½³ÌΪy2=4x£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+t£¬A£¨$\frac{{{y}_{1}}^{2}}{4}$£¬y1£©£¬B£¨$\frac{{{y}_{2}}^{2}}{4}$£¬y2£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì¿ÉµÃy2-4my-4t=0£¬
y1+y2=4m£¬y1y2=-4t£¬
$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$£¬¼´ÓÐ$\frac{{{y}_{1}}^{2}}{4}$•$\frac{{{y}_{2}}^{2}}{4}$+y1y2=$\frac{9}{4}$£¬
½âµÃy1y2=-18»ò2£¨ÉáÈ¥£©£¬
¼´-4t=-18£¬½âµÃt=$\frac{9}{2}$£®
ÔòÓÐABºã¹ý¶¨µãQ£¨$\frac{9}{2}$£¬0£©£»
¢Ú½â£ºÓɢٿɵÃ|AB|=$\sqrt{1+{m}^{2}}$|y2-y1|=$\sqrt{1+{m}^{2}}•\sqrt{16{m}^{2}+72}$£¬
ͬÀí|GD|=$\sqrt{1+\frac{1}{{m}^{2}}}•\sqrt{\frac{16}{{m}^{2}}+72}$£¬
ÔòËıßÐÎAGBDÃæ»ýS=$\frac{1}{2}$|AB|•|GD|=4$\sqrt{[£¨2+£¨{m}^{2}+\frac{1}{{m}^{2}}£©][85+18£¨{m}^{2}+\frac{1}{{m}^{2}}£©]}$£¬
Áîm2+$\frac{1}{{m}^{2}}$=¦Ì£¨¦Ì¡Ý2£©£¬ÔòS=4$\sqrt{18{¦Ì}^{2}+121¦Ì+170}$ÊǹØÓڦ̵ÄÔöº¯Êý£¬
Ôòµ±¦Ì=2ʱ£¬SÈ¡µÃ×îСֵ£¬ÇÒΪ88£®
µ±ÇÒ½öµ±m=¡À1ʱ£¬ËıßÐÎAGBDÃæ»ýµÄ×îСֵΪ88£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÅ×ÎïÏß·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¾ßÓÐÒ»¶¨µÄÔËËãÁ¿£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬ABCDÊDZ߳¤Îª2µÄÁâÐΣ¬ÇÒ¡ÏBAD=60¡ã£¬PA¡ÍPC£¬
PB=PD£¬¶þÃæ½ÇP-BD-AΪ60¡ã£¬Ôò|PC|=£¨¡¡¡¡£©
A£®3$\sqrt{2}$B£®3$\sqrt{3}$C£®3D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®S£¨1£¬1£©ÊÇÅ×ÎïÏßL£ºy2=2px£¨p£¾0£©ÉÏÒ»µã£¬ÒÔSΪԲÐÄ£¬rΪ°ë¾¶µÄÔ²£¬ÓëxÖáÕý°ëÖáÏཻÓÚA£¬BÁ½µã£¬Á¬½á²¢ÑÓ³¤SA£¬SB£¬·Ö±ð½»ÍÖÔ²LÓÚC£¬DÁ½µã£¨ÈçͼËùʾ£©£®
£¨1£©ÇópµÄÖµ¼°rµÄȡֵ·¶Î§£»
£¨2£©ÇóÖ¤£ºÖ±ÏßCDµÄбÂÊΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC1¾­¹ýÉìËõ±ä»»$\left\{{\begin{array}{l}{x'=\frac{x}{2}}\\{y'=\frac{{\sqrt{3}}}{3}y}\end{array}}\right.$µÃµ½ÇúÏßC2£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±ê×ø±êϵ£®
£¨1£©·Ö±ðÇó³öÇúÏßC1ÓëÇúÏßC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôPΪÇúÏßC2ÉϵÄÈÎÒâÒ»µã£¬M£¬N·Ö±ðΪÇúÏßC1µÄ×óÓÒ¶¥µã£¬Çó|PM|+|PN|µÄ×î´óÖµÇÒÇó³öµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=x+1-eax£¨a¡ÊR£©
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±$x¡Ê[\frac{1}{a}£¬\frac{2}{a}]$ʱ£¬$f£¨x£©¡Ýf£¨\frac{2}{a}£©$£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©Ö¤Ã÷£º?t¡Ê[-1£¬1]£¬Ê¹µÃf£¨t£©£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏÒ»µãP£¨1£¬$\frac{3}{2}$£©ÓëÍÖÔ²ÓÒ½¹µãµÄÁ¬Ïß´¹Ö±ÓÚxÖᣬֱÏßl£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¨¾ù²»ÔÚ×ø±êÖáÉÏ£©£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÉèOÎª×ø±êÔ­µã£¬Èô¡÷AOBµÄÃæ»ýΪ$\sqrt{3}$£¬ÊÔÅжÏÖ±ÏßOAÓëOBµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+4x£¬£¨x£¼1£©}\\{{e}^{x}£¬£¨x¡Ý1£©}\end{array}\right.$£¬Èôº¯Êýg£¨x£©=f£¨x£©-kxÇ¡ÓÐÒ»¸öÁãµã£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨e£¬+¡Þ£©B£®£¨-¡Þ£¬e£©C£®£¨-¡Þ£¬$\frac{1}{e}$£©D£®[0£¬e£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£º½«Ö±½ÇÈý½ÇÐÎPAO£¬ÈÆÖ±½Ç±ßPOÐýת¹¹³ÉÔ²×¶£¬ABCDÊÇ¡ÑOµÄÄÚ½Ó¾ØÐΣ¬MΪÊÇĸÏßPAµÄÖе㣬PA=2AO£®
£¨1£©ÇóÖ¤£ºPC¡ÎÃæMBD£»
£¨2£©µ±AM=CD=2ʱ£¬ÇóµãBµ½Æ½ÃæMCDµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Å×ÎïÏßy2=2pxµÄ½¹µãΪF£¬¹ýµãFбÂÊΪkµÄÖ±Ïß½»Å×ÎïÏßÓÚA£¬BÁ½µã£¬ÒÔABΪֱ¾¶µÄÔ²ÓëÖ±Ïßk£ºx=-2ÏàÇУ¬ÔòpµÄֵΪ£¨¡¡¡¡£©
A£®2B£®4C£®6D£®ÓÉkµÄֵȷ¶¨

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸