精英家教网 > 高中数学 > 题目详情
7.抛物线y2=2px的焦点为F,过点F斜率为k的直线交抛物线于A,B两点,以AB为直径的圆与直线k:x=-2相切,则p的值为(  )
A.2B.4C.6D.由k的值确定

分析 由已知可得,x=-2是抛物线的准线,即可得出结论.

解答 解:由已知可得,x=-2是抛物线的准线,故p=4.
故选:B.

点评 本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x-5)2+y2=9的两条切线,切点为M,N,|MN|=3$\sqrt{3}$
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$(其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,其中俯视图中半圆半径为$\sqrt{2}$,则该几何体的体积是(  )
A.$2π+8\sqrt{2}+2$B.$2π+8\sqrt{2}+1$C.$π+8\sqrt{2}+1$D.$π+8\sqrt{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|2x-a|+|2x+3|,g(x)=1+$\sqrt{2x-{x^2}}$.
(Ⅰ)若a=1时,解不等式:|2x-a|+|2x+3|≤6;
(Ⅱ)若对任意x1∈[0,2],都存在x2∈R,使得g(x1)=f(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{6}$,an+1=$\frac{1}{3}$(an-1).
(1)证明:{an+$\frac{1}{2}$}是等比数列,并求{an}的通项公式;
(2)证明:a1+a2+…+an<$\frac{2-n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=$\left\{{\begin{array}{l}{{a^x},x<0}\\{{{log}_a}x,x>0}\end{array}}$,那么y=f(x)-a的零点个数有(  )
A.0个B.1个
C.2个D.a的值不同时零点的个数不同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{a}{x}$+lnx(a∈R).
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)研究y=f(x)在定义域内的单调性;
(3)如果f(x)≥0在定义域内恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.二次函数f(x)开口向上,且满足f(x+1)=f(3-x)恒成立.已知它的两个零点和顶点构成边长为2的正三角形.
(1)求f(x)的解析式;
(2)讨论f(x)在[t,t+3]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线l过点P(-1,2),且倾斜角为45°,则直线l的方程为(  )
A.x-y+1=0B.x-y-1=0C.x-y-3=0D.x-y+3=0

查看答案和解析>>

同步练习册答案