精英家教网 > 高中数学 > 题目详情
19.已知f(x)=$\frac{a}{x}$+lnx(a∈R).
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)研究y=f(x)在定义域内的单调性;
(3)如果f(x)≥0在定义域内恒成立,求a的取值范围.

分析 (1)根据导数的几何意义即可求出曲线y=f(x)在点(1,f(1))处的切线方程,
(2)先求出函数的导函数,再分类讨论,即可判断函数的单调性,
(3)分离参数,构造函数g(x)=-xlnx,根据导数求出函数的最大值,问题得以解决.

解答 解:(1)a=3时,f(x)=$\frac{3}{x}$+lnx,
∴f′(x)=-$\frac{3}{{x}^{2}}$+$\frac{1}{x}$,
∴f′(1)=-3+1=-2,f(1)=3,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-3=-2(x-1),即为y=-2x+5;
(2)∵${f^'}(x)=-\frac{a}{x^2}+\frac{1}{x}=\frac{x-a}{x^2}$,
当a≤0时,f(x)在(0,+∞)上递增,
当a>0时,f(x)在(a,+∞)上递增,在(0,a)上递减.
(3)∵f(x)≥0在定义域内恒成立,
∴a≥-xlnx对x∈(0,+∞)恒成立,
设g(x)=-xlnx,
∴g′(x)=-lnx-1,
令g′(x)=0,解得x=$\frac{1}{e}$,
当g′(x)>0时,解得0<x<$\frac{1}{e}$,函数g(x)单调递增,
当g′(x)<0时,解得x>$\frac{1}{e}$,函数g(x)单调递减,
∴g(x)max=g($\frac{1}{e}$)=$\frac{1}{e}$,
∴a≥$\frac{1}{e}$,
故a的取值范围为[$\frac{1}{e}$,+∞).

点评 本题考查了切线方程和函数的单调性以及函数恒成立问题,考查了数学转化思想方法和分类讨论的数学思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,(x<1)}\\{{e}^{x},(x≥1)}\end{array}\right.$,若函数g(x)=f(x)-kx恰有一个零点,则k的取值范围是(  )
A.(e,+∞)B.(-∞,e)C.(-∞,$\frac{1}{e}$)D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+3x+a
(1)当a=-2时,求不等式f(x)>2的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=2px的焦点为F,过点F斜率为k的直线交抛物线于A,B两点,以AB为直径的圆与直线k:x=-2相切,则p的值为(  )
A.2B.4C.6D.由k的值确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知底面为矩形的四棱锥D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,且二面角D-AE-C的正切值为-2.
(1)求证:平面ADE⊥平面CDE;
(2)求点D到平面ABCE的距离;
(3)求二面角A一BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C:ρ=$\frac{2}{1-sinθ}$,直线l:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数,0≤α<π).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A、B两点(A在第一象限),当$\overrightarrow{OA}$+3$\overrightarrow{OB}$=$\overrightarrow{0}$时,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立坐标系.已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)且倾斜角为$\frac{π}{4}$的直线l与曲线C分别交于M,N两点.
(1)写出曲线C的直角坐标方程和直线l的参数方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-log3(9x)•log3$\frac{x}{3}$($\frac{1}{9}$≤x≤27).
(1)设t=log3x,求t的取值范围
(2)求f(x)的最小值,并指出f(x)取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知PA垂直于以AB为直径的ΘO所在的平面,C是ΘO上异于A,B的动点,PA=1,AB=2,当三棱锥P-ABC取得最大体积时,求:
(1)PC与AB所成角的大小;
(2)PA与面PCB所成角的大小.

查看答案和解析>>

同步练习册答案