分析 (1)利用极坐标转化为普通方程求解
(2)把参数表达式代入曲线C得出普通方程,利用韦达定理求解得出即可.
解答 解:(1)ρsin2θ=2acosθ可变为ρ2sin2θ=2aρcosθ,
∴曲线C的直角坐标方程为y2=2ax.
直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+tcos\frac{π}{4}}\\{y=-4+tsin\frac{π}{4}}\end{array}}\right.(t为参数)⇒\begin{array}{l}{x=-2+\frac{{\sqrt{2}}}{2}t,}\\{y=-4+\frac{{\sqrt{2}}}{2}t,}\end{array}(t为参数)$.
(2)将直线l的参数表达式代入曲线C得$\frac{1}{2}{t^2}-(4\sqrt{2}+\sqrt{2}a)t+16+4a=0$,
∴${t_1}+{t_2}=8\sqrt{2}+2\sqrt{2}a,{t_1}{t_2}=32+8a$.
又|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|,
由题意知,|t1-t2|2=|t1t2|,(t1+t2)2=5t1t2,
代入解得a=1.
点评 本题考查了参数,极坐标方程的运用,转化为普通方程求解,属于容易题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k>1 | B. | k>1或k<$\frac{1}{4}$ | C. | k<$\frac{1}{4}$ | D. | 以上答案 都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com