8£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC1¾­¹ýÉìËõ±ä»»$\left\{{\begin{array}{l}{x'=\frac{x}{2}}\\{y'=\frac{{\sqrt{3}}}{3}y}\end{array}}\right.$µÃµ½ÇúÏßC2£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±ê×ø±êϵ£®
£¨1£©·Ö±ðÇó³öÇúÏßC1ÓëÇúÏßC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôPΪÇúÏßC2ÉϵÄÈÎÒâÒ»µã£¬M£¬N·Ö±ðΪÇúÏßC1µÄ×óÓÒ¶¥µã£¬Çó|PM|+|PN|µÄ×î´óÖµÇÒÇó³öµãPµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâºÍƽ·½¹ØÏµÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÓɦÑ2=x2+y2ºÍÌâÒâÇó³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³öÇúÏßC2²ÎÊý·½³Ì£¬ÉèPµãµÄ²ÎÊý×ø±ê£¬Çó³öµãM¡¢NµÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó³ö|PM|+|PN|²¢»¯¼ò£¬ÔÙ»¯¼ò£¨|PM|+|PN|£©2£¬ÀûÓÃÕýÏÒº¯ÊýµÄ×îÖµÇó³ö£¨|PM|+|PN|£©2µÄ×îÖµ£¬¼´¿ÉÇó³ö|PM|+|PN|µÄ×î´óÖµ£»

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}}\right.$£¬¿ÉµÃÇúÏßµÄÖ±½Ç×ø±êµÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬
ÇúÏßC2µÄ·½³Ì±äΪ$\left\{{\begin{array}{l}{x'=cos¦È}\\{y'=cos¦È}\end{array}}\right.$£¬ÇúÏßC2µÄÖ±½Ç×ø±êµÄ·½³ÌΪx2+y2=1£¬
°Ñ$\left\{{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}}\right.$´úÈëÉÏÊöµÄÇúÏߵķ½³Ì¿ÉµÃ3¦Ñ2cos2¦È+4¦Ñ2sin2¦È=12£¬
¼´ÇúÏßC1µÄ·½³ÌΪ3¦Ñ2+¦Ñ2sin2¦È=12£¬ÇúÏßC2µÄ¼«×ø±êµÄ·½³ÌΪ¦Ñ=1£®
£¨2£©ÇúÏßC1µÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬ËùÒÔ×óÓÒ¶¥µã·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£¬ÇúÏßC2µÄ·½³ÌΪx2+y2=1£¬ÉèµãP£¨cos¦Á£¬sin¦Á£©£¬$|{PM}|+|{PN}|=\sqrt{{{£¨cos¦Á+2£©}^2}+{{sin}^2}¦Á}+\sqrt{{{£¨cos¦Á-2£©}^2}+{{sin}^2}¦Á}=\sqrt{5+4cos¦Á}+\sqrt{5-4cos¦Á}$¡à${£¨|{PM}|+|{PN}|£©^2}=10+2\sqrt{25-16{{cos}^2}¦Á}¡Ü10+2\sqrt{25-16¡Á0}=20$£¬
¡à${£¨|{PM}|+|{PN}|£©_{max}}=2\sqrt{5}$
µ±cos¦Á=0ʱ£¬sin¦Á=¡À1£®
µãPµÄ×ø±êΪ£¨0£¬1£©»ò£¨0£¬-1£©Ê±£¬È¡×î´óÖµ£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬ÒÔ¼°Çó×îÖµÎÊÌ⣬¿¼²é»¯¼ò¡¢¼ÆËãÄÜÁ¦

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÖ±Ïß$\sqrt{3}$x-y-$\sqrt{3}$=0ÓëxÖáµÄ½»µãΪN£¬ÓëÅ×ÎïÏßy2=2px£¨p£¾0£©ÏཻÓÚµãA£¬ÓëÅ×ÎïÏßµÄ×¼ÏßÏཻÓÚµãB£¬µãNΪABµÄÖе㣮
£¨1£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨2£©¹ýµãM£¨m£¬0£©£¨m£¼0£©×÷бÂÊΪ$\frac{{\sqrt{3}}}{3}$µÄÖ±ÏßÓëÅ×ÎïÏßy2=2pxÏཻÓÚC£¬DÁ½µã£¬FΪÅ×ÎïÏߵĽ¹µã£¬Èç¹û
|CD|2=$\frac{64}{13}$|FC|•|FD|£¬Çó¡ÏCFDµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ£¬ÉèÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬¹ýµãFµÄÖ±Ïßl1½»Å×ÎïÏßCÓÚA£¬BÁ½µã£¬ÇÒ|AB|=8£¬Ïß¶ÎABµÄÖе㵽yÖáµÄ¾àÀëΪ3£®Ö±Ïßl2ÓëÔ²${x^2}+{y^2}=\frac{1}{2}$ÇÐÓÚµãP£¬ÓëÅ×ÎïÏßCÇÐÓÚµãQ£¬Ôò¡÷FPQµÄÃæ»ý£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®2C£®$\frac{{\sqrt{3}}}{4}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»­³öµÄÊÇÒ»Õý·½Ìå±»½ØÈ¥Ò»²¿·ÖºóËùµÃ¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®54B£®162C£®54+18$\sqrt{3}$D£®162+18$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®±ß³¤Îª4µÄÁâÐÎABCDÖУ¬Âú×ã¡ÏDCB=60¡ã£¬µãE£¬F·Ö±ðÊDZßCDºÍCBµÄÖе㣬AC½»BDÓÚµãH£¬AC½»EFÓÚµãO£¬ÑØEF½«¡÷CEF·­ÕÛµ½¡÷PEFµÄλÖã¬Ê¹Æ½ÃæPEF¡ÍÆ½ÃæABD£¬Á¬½ÓPA£¬PB£¬PD£¬µÃµ½ÈçͼËùʾµÄÎåÀâ×¶P-ABFED£®
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍPA£»
£¨¢ò£©ÇóµãDµ½Æ½ÃæPBFµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÍAD£¬AB¡ÎCD£¬$CD=2AB=2BP=\sqrt{2}AD$£¬$\overrightarrow{CE}=¦Ë\overrightarrow{EB}$£¨¦Ë£¾0£©£¬DE¡ÍÆ½ÃæPBC£¬²àÃæABP¡Íµ×ÃæABCD
£¨1£©Çó¦ËµÄÖµ£»
£¨2£©ÇóÖ±ÏßCDÓëÃæPDEËù³É½Ç¦ÈµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚµãK£¬¹ýµãK×÷Ô²£¨x-5£©2+y2=9µÄÁ½ÌõÇÐÏߣ¬ÇеãΪM£¬N£¬|MN|=3$\sqrt{3}$
£¨1£©ÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨2£©ÉèA£¬BÊÇÅ×ÎïÏßEÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£®
¢ÙÇóÖ¤£ºÖ±ÏßAB±Ø¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãQµÄ×ø±ê£»
¢Ú¹ýµãQ×÷ABµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚG£¬DÁ½µã£¬ÇóËıßÐÎAGBDÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ $\left\{\begin{array}{l}x=\sqrt{2}+2t\\ y=-\sqrt{2}+t\end{array}$£¨tΪ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ·½³ÌΪ¦Ñ=$\frac{2}{{\sqrt{1+3{{sin}^2}¦È}}}$£®
£¨¢ñ£©ÇóÇúÏßC1¡¢C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôA¡¢B·Ö±ðΪÇúÏßC1¡¢C2ÉϵÄÈÎÒâµã£¬Çó|AB|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=|2x-a|+|2x+3|£¬g£¨x£©=1+$\sqrt{2x-{x^2}}$£®
£¨¢ñ£©Èôa=1ʱ£¬½â²»µÈʽ£º|2x-a|+|2x+3|¡Ü6£»
£¨¢ò£©Èô¶ÔÈÎÒâx1¡Ê[0£¬2]£¬¶¼´æÔÚx2¡ÊR£¬Ê¹µÃg£¨x1£©=f£¨x2£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸