分析 (1)先证明BP⊥平面ABCD,以D为原点建立坐标系,设AB=1,求出$\overrightarrow{DE}$,$\overrightarrow{BC}$的坐标,根据$\overrightarrow{DE}•\overrightarrow{BC}=0$列方程解出λ;
(2)求出平面PDE的法向量$\overrightarrow{u}$,通过计算<$\overrightarrow{u},\overrightarrow{DC}$>得出θ.
解答
解:(1)∵AB⊥AD,平面ABP⊥底面ABCD,平面ABP∩面ABCD=AB,
∴AD⊥面ABP,又BP?平面ABP,
∴AD⊥BP,
∵DE⊥平面PBC面,BP?平面PBC,
∴DE⊥BP,又AD∩DE=D,AD?平面ABCD,DE?平面ABCD,
∴BP⊥面ABCD,
过点D做BP的平行线为z轴,DA,DC分别为x,y轴建立空间直角坐标系,
设AB=BP=1,则AD=$\sqrt{2}$,CD=2,
∴B($\sqrt{2}$,1,0),C(0,2,0),D(0,0,0),$\overrightarrow{BC}$=(-$\sqrt{2}$,1,0),$\overrightarrow{DC}$=(0,2,0),
∵$\overrightarrow{CE}=λ\overrightarrow{EB}$,∴$\overrightarrow{CE}=\frac{λ}{1+λ}\overrightarrow{CB}$=($\frac{\sqrt{2}λ}{1+λ}$,-$\frac{λ}{1+λ}$,0),
∴$\overrightarrow{DE}$=$\overrightarrow{DC}+\overrightarrow{CE}$=($\frac{\sqrt{2}λ}{1+λ}$,$\frac{λ+2}{1+λ}$,0),
∵DE⊥BC,∴$\overrightarrow{DE}•\overrightarrow{BC}=\frac{-2λ}{1+λ}+\frac{λ+2}{1+λ}=0$,
解得λ=2.
(2)由(1)知$\overrightarrow{DE}=(\frac{{2\sqrt{2}}}{3},\frac{4}{3},0)$,$\overrightarrow{DP}=(\sqrt{2},1,1)$,设平面PDE法向量为$\overrightarrow u=(x,y,z)$,
∴$\left\{\begin{array}{l}\overrightarrow u•\overrightarrow{DE}=0\\ \overrightarrow u•\overrightarrow{DP}=0\end{array}\right.$,即$\left\{\begin{array}{l}{2\sqrt{2}x+4y=0}\\{\sqrt{2}x+y+z=0}\end{array}\right.$,令z=1得$\overrightarrow u=(-\sqrt{2},1,1)$,
∴cos<$\overrightarrow{u},\overrightarrow{DC}$>=$\frac{\overrightarrow{u}•\overrightarrow{DC}}{|\overrightarrow{u}||\overrightarrow{DC}|}$=$\frac{2}{2•2}$=$\frac{1}{2}$,∴<$\overrightarrow{u}$,$\overrightarrow{DC}$>=60°,
∴直线CD与面PDE所成角θ=30°.
点评 本题考查了空间角的计算与空间向量的应用,属于中档题.
科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题
已知
是定义在
上的奇函数且
,当
,且
时,有
,若
对所有
、
恒成立,则实数
的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 为定值-3 | B. | 为定值3 | C. | 为定值-1 | D. | 不是定值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com