精英家教网 > 高中数学 > 题目详情
20.正方体ABCD-A1B1C1D1中,沿平面A1ACC1将正方体分成两部分,其中一部分如图所示,过直线A1C的平面A1CM与线段BB1交于点M.
(Ⅰ)当M与B1重合时,求证:MC⊥AC1
(Ⅱ)当平面A1CM⊥平面A1ACC1时,求平面A1CM与平面ABC所成锐二面角的余弦值.

分析 (Ⅰ)连接C1B,推导出AB⊥B1C,BC⊥AC1,由此能证明MC⊥AC1
(Ⅱ)分别以CB、AB、BB1为x、y、z轴建立空间直角坐标系,利用向量法能出平面A1CM与平面ABC所成锐二面角的余弦值.

解答 证明:(Ⅰ)连接C1B,在正方形B1BCC1中,BC1⊥B1C,
正方体ABCD-A1B1C1D1中,AB⊥平面B1BCC1
B1C∈平面B1BCC1,∴AB⊥B1C,
∴B1C⊥平面ABC1,∴BC⊥AC1
∴MC⊥AC1.-------------(4分)
解:(Ⅱ)正方体ABCD-A1B1C1D1中,CB、AB、BB1两两垂直,
分别以CB、AB、BB1为x、y、z轴建立空间直角坐标系,
设AB=a,则C(-a,0,0),A1(0,-a,a),
设M(0,0,z),则$\overrightarrow{C{A_1}}=(a,-a,a)$,$\overrightarrow{CM}=(a,0,z)$,
设平面A1MC的法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
则$\left\{{\begin{array}{l}{\overrightarrow{n_1}•\overrightarrow{C{A_1}}=0}\\{\overrightarrow{n_1}•\overrightarrow{CM}=0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{a{x_1}-a{y_1}+a{z_1}=0}\\{a{x_1}+z{z_1}=0}\end{array}}\right.$,令z1=a,得$\overrightarrow{n_1}=(-z,a-z,a)$,
平面A1ACC1的法向量为$\overrightarrow{n_2}=(1,1,0)$,
平面ABC的法向量为$\overrightarrow{n_3}=(0,0,1)$,
∵平面A1CM⊥平面A1ACC1
∴$\overrightarrow{n_1}•\overrightarrow{n_1}=0$,得$z=\frac{1}{2}a$,∴$\overrightarrow{n_1}=(-\frac{a}{2},\frac{a}{2},a)$,--------(8分)
设平面A1CM与平面ABC所成锐二面角为θ,
则$cosθ=\frac{{|{\overrightarrow{n_1}•\overrightarrow{n_3}}|}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_3}}|}}=\frac{a}{{1•\frac{{\sqrt{6}}}{2}a}}=\frac{{\sqrt{6}}}{3}$.
故平面A1CM与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{6}}{3}$.-------------(12分)

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.定义在R上的函数f(x)满足f(1)=1,且2f′(x)<1,当x∈[0,2π]时,不等式f(2cosx)<2cos2$\frac{x}{2}$-$\frac{1}{2}$的解集为$[{0,\frac{π}{3}})∪({\frac{5π}{3},2π}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,$CD=2AB=2BP=\sqrt{2}AD$,$\overrightarrow{CE}=λ\overrightarrow{EB}$(λ>0),DE⊥平面PBC,侧面ABP⊥底面ABCD
(1)求λ的值;
(2)求直线CD与面PDE所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则该几何体的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1的参数方程为 $\left\{\begin{array}{l}x=\sqrt{2}+2t\\ y=-\sqrt{2}+t\end{array}$(t为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的方程为ρ=$\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$.
(Ⅰ)求曲线C1、C2的直角坐标方程;
(Ⅱ)若A、B分别为曲线C1、C2上的任意点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ.
(Ⅰ) 求圆C的直角坐标方程;并判断直线l与圆C的位置关系.
(Ⅱ) 设圆C与直线l交于点A、B,若点P的坐标为(2,1),求|PA|+|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\frac{x}{{e}^{2x}}$+1的最大值为$\frac{1}{2e}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知高与底面半径相等的圆锥的体积为$\frac{8π}{3}$,其侧面积与球O的表面积相等,则球O的体积为$\frac{{4\root{4}{8}π}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m$=(cosx,-1),$\overrightarrow n$=($\sqrt{3}$sinx,-$\frac{1}{2}$),设函数f(x)=($\overrightarrow m$+$\overrightarrow n$)•$\overrightarrow m$.
(1)求函数f(x)的最小正周期;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的最大值,并指出此时x的值.

查看答案和解析>>

同步练习册答案