精英家教网 > 高中数学 > 题目详情
4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点P(1,$\frac{3}{2}$)与椭圆右焦点的连线垂直于x轴,直线l:y=kx+m与椭圆C相交于A、B两点(均不在坐标轴上).
(1)求椭圆C的标准方程;
(2)设O为坐标原点,若△AOB的面积为$\sqrt{3}$,试判断直线OA与OB的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

分析 (1)由题意可知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,c=1,则a2=b2+1,将P(1,$\frac{3}{2}$)代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(2)将直线方程代入椭圆方程,由△>0,求得m2<4k2+3.则丨x1-x2丨=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$,则S△OAB=$\frac{1}{2}$•|m|•|x1-x2|=$\frac{1}{2}$•|m|•$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$=$\sqrt{3}$,即可求得4k2-m2=m2-3,kOA•kOB=$\frac{{y}_{2}{y}_{1}}{{x}_{1}{x}_{2}}$=-$\frac{3}{4}$•$\frac{4{k}^{2}-{m}^{2}}{{m}^{2}-3}$=-$\frac{3}{4}$,直线OA与OB的斜率之积为定值-$\frac{3}{4}$.

解答 解:(1)由题意知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,c=1,则a2=b2+1,

由P(1,$\frac{3}{2}$)在椭圆上,则$\frac{1}{{b}^{2}+1}+\frac{9}{4{b}^{2}}=1$,解得:b2=3,则a2=4,
∴椭圆C的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)设点A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(4k2+3)2+8kmx+4m2-12=0,
由△=(8km)2-16(4k2+3)(m2-3)>0,得m2<4k2+3.
∵x1+x2=-$\frac{8km}{4{k}^{2}+3}$,x1x2=$\frac{4{m}^{2}-12}{4{k}^{2}+3}$,
丨x1-x2丨=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(-\frac{8km}{4{k}^{2}+3})^{2}-4×\frac{4{m}^{2}-12}{4{k}^{2}+3}}$=$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$
∴S△OAB=$\frac{1}{2}$•|m|•|x1-x2|=$\frac{1}{2}$•|m|•$\frac{4\sqrt{3}•\sqrt{4{k}^{2}+3-{m}^{2}}}{4{k}^{2}+3}$=$\sqrt{3}$,
化简得4k2+3-2m2=0,满足△>0,
从而有4k2-m2=m2-3,
∴kOA•kOB=$\frac{{y}_{2}{y}_{1}}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}({x}_{1}+m)({x}_{2}+m)}{{x}_{1}{x}_{2}}$=$\frac{-12{k}^{2}+3{m}^{2}}{4{m}^{2}-12}$=-$\frac{3}{4}$•$\frac{4{k}^{2}-{m}^{2}}{{m}^{2}-3}$,由上式,得$\frac{4{k}^{2}-{m}^{2}}{{m}^{2}-3}$=1,
∴kOA•kOB=-$\frac{3}{4}$,
∴直线OA与OB的斜率之积为定值-$\frac{3}{4}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式,三角形面积公式与直线的斜率公式的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

已知集合,且,则的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为(  )
A.54B.162C.54+18$\sqrt{3}$D.162+18$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,$CD=2AB=2BP=\sqrt{2}AD$,$\overrightarrow{CE}=λ\overrightarrow{EB}$(λ>0),DE⊥平面PBC,侧面ABP⊥底面ABCD
(1)求λ的值;
(2)求直线CD与面PDE所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x-5)2+y2=9的两条切线,切点为M,N,|MN|=3$\sqrt{3}$
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$(其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则该几何体的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1的参数方程为 $\left\{\begin{array}{l}x=\sqrt{2}+2t\\ y=-\sqrt{2}+t\end{array}$(t为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的方程为ρ=$\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$.
(Ⅰ)求曲线C1、C2的直角坐标方程;
(Ⅱ)若A、B分别为曲线C1、C2上的任意点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\frac{x}{{e}^{2x}}$+1的最大值为$\frac{1}{2e}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=$\left\{{\begin{array}{l}{{a^x},x<0}\\{{{log}_a}x,x>0}\end{array}}$,那么y=f(x)-a的零点个数有(  )
A.0个B.1个
C.2个D.a的值不同时零点的个数不同

查看答案和解析>>

同步练习册答案