精英家教网 > 高中数学 > 题目详情
如图,三棱柱中,⊥面
的中点.
(Ⅰ)求证:
  (Ⅱ)求二面角的余弦值;
(Ⅲ)在侧棱上是否存在点,使得
?请证明你的结论.
见解析.
第一问中,利用线面平行的判定定理可以得到OD∥B1A,又B1A?平面BDC1,OD⊆平面BDC1
∴B1A∥面BDC1
;第二问中,利用建立空间直角坐标系可以设出法向量,利用法向量的夹角求解二面角的平面角的方法得到。
第三问中,利用假设成立,推出不符合线面垂直的情况,得到一个矛盾,进而得到结论。
(1)证明:连接B1C,交BC1于点O,
则O为B1C的中点,
∵D为AC中点,
∴OD∥B1A,
又B1A?平面BDC1,OD⊆平面BDC1
∴B1A∥面BDC1(4分)
(2)解:∵AA1⊥平面ABC,BC⊥AC,AA1∥CC1
∴CC1⊥面ABC,
则BC⊥平面AC1,CC1⊥AC
如图建系,则C1(3,0,0),B(0,0,2),D(0,1,0),C(0,0,0)

∴ C1D =(-3,1,0), C1B =(-3,0,2)
设平面C1DB的法向量为n=(x,y,z)
则n=(2,6,3)
又平面BDC的法向量为 CC1 =(3,0,0)
∴二面角C1-BD-C的余弦值:cos< CC1,n>= (CC1 .n)/ | CC1 |,|n| ="2/" 7
(3)不存在
(III)假设侧棱AA1上存在一点P(2,y,0)(0≤y≤3),使得CP⊥面BDC1.
则  CP • C1B =0  CP • C1D =0  ,
即 3(y-3)=0
2+3(y-3)=0 ∴方程组无解.∴假设不成立.
∴侧棱AA1上不存在点P,使CP⊥面BDC1.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知平面平面,矩形的边长.

(Ⅰ)证明:直线平面
(Ⅱ)求直线和底面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直, AA1=AB=AC=1,AB⊥AC, M是CC1的中点, N是BC的中点,点P在线段A1B1上,且满足A1P=lA1B1.
(1)证明:PN⊥AM.
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角最大值的正切值.
(3)是否存在点P,使得平面 PMN与平面ABC所成的二面角为45°.若存在求出l的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点,
求点A到平面A1DE的距离;
求证:CF∥平面A1DE,
求二面角E-A1D-A的平面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

第(1)小题满分6分,第(2)小题满分8分.
如图:在正方体中,的中点,是线段上一点,且.
(1)  求证:
(2)  若平面平面,求的值.[

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)如图,在直三棱柱ABC—A1B1C1中,∠ACB=900,CB=1,CA=,AA1=,M为侧棱CC1上一点,AM⊥BA1
(1)求证:AM⊥平面A1BC;
(2)求二面角B—AM—C的大小;
(3)求点C到平面ABM的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,AB是⊙O的直径,⊙O,C为圆周上一点,若,则B点到平面PAC的距离为                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

l1,l2是空间中两条不同的直线,a,β是两个不同的平面,则下列命题正确的是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面内有条直线,其中任何两条不平行,任何三条不过同一点,若这条直线把平面分成个平面区域,则等于(     )
A.18B.22C.24D.32

查看答案和解析>>

同步练习册答案