分析 设z=a+bi(a,b∈R),代入z•$\overline{z}$+(3+$\sqrt{3}$i)z+(3-$\sqrt{3}$i)$\overline{z}$+9=0,得z的轨迹是以(-3,$\sqrt{3}$)为圆心,以$\sqrt{3}$为半径的圆,画出图形,数形结合得答案.
解答 解:设z=a+bi(a,b∈R),![]()
由z•$\overline{z}$+(3+$\sqrt{3}$i)z+(3-$\sqrt{3}$i)$\overline{z}$+9=0,得
a2+b2+(3+$\sqrt{3}$i)(a+bi)+(3-$\sqrt{3}$i)(a-bi)+9=0,
即${a}^{2}+{b}^{2}+6a-2\sqrt{3}b+9=0$,
∴$(a+3)^{2}+(b-\sqrt{3})^{2}=3$.
则z的轨迹是以(-3,$\sqrt{3}$)为圆心,以$\sqrt{3}$为半径的圆.
如图,
则|z-$\sqrt{3}$i|的最大值为3+$\sqrt{3}$,最小值为3-$\sqrt{3}$.
点评 本题考查复数的代数表示法及其几何意义,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 210种 | B. | 180种 | C. | 150种 | D. | 120种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2=1,则x=1”是真命题 | |
| B. | 命题“若x2-5x+6=0,则x=2”的逆命题是“若x≠2,则x2-5x+6≠0” | |
| C. | 命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题 | |
| D. | 命题“若x=2,则x2-5x+6=0”的否命题是“若x=2,则x2-5x+6≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | -8 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com