精英家教网 > 高中数学 > 题目详情
17.已知f(x)在R上是奇函数,且满足f(x+3)=-f(x),当x∈[0,2]时,f(x)=2x2,则f(-2017)=(  )
A.8B.-8C.2D.-2

分析 利用函数的奇偶性和单调性,求得f(-2017)的值.

解答 解:知f(x)在R上是奇函数,且满足f(x+3)=-f(x),∴f(x+6)=f(x),故函数f(x)的周期为6,
当x∈[0,2]时,f(x)=2x2,∴f(-2017)=f(-1)=-f(1)=-2,
故选:D.

点评 本题主要考查函数的奇偶性和单调性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,点P在圆ρ=1上,则点P到直线ρ(cosθ+2sinθ)=5的距离的最小值为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{3}$-1D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合M={z||z+1|=1,z∈C},P={z||z-2i|=|z|,z∈C},则M∩P=(  )
A.-1+iB.C.{-1+i}D.{-1-i}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知z•$\overline{z}$+(3+$\sqrt{3}$i)z+(3-$\sqrt{3}$i)$\overline{z}$+9=0,求|z-$\sqrt{3}$i|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
 单价x元 99.2 9.4 9.6 9.8 10 
销量y件  10094 93 90 85 78 
(1)求回归直线方程$\widehat{y}$=bx+a;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)(附:对于一组数据(μ1,v1),(μ2,v2),…,(μn,vn),其回归直线$\widehat{v}$=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({μ}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$),$\sum_{i=1}^{6}{x}_{i}{y}_{i}$=5116,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是函数f(x)=-x2+ax+b的部分图象,f′(x)是f(x)的导函数,则函数g(x)=ex-f′(x)的零点所在的区间是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四面体ABCD中,已知AB=BD=AD=DC,BD⊥DC,AC=λAB,λ∈R.
(Ⅰ)若λ=$\sqrt{2}$,求证:面ABD⊥面ADC;
(Ⅱ)是否存在实数λ,使二面角A-BD-C的平面角为30°,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知角α的终边上一点的坐标为(sin25°,cos25°),则角α的最小正值为(  )
A.25°B.45°C.65°D.115°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c 分别是锐角△ABC三个内角A,B,C的对边,且(sin A+sin B)(a-b)=(sin C-sin B )c,且b+c=8.
(Ⅰ)求A的值; 
(Ⅱ) 求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案