分析 (Ⅰ)利用已知条件求出椭圆的几何量,即可求解椭圆C的方程;
(Ⅱ)(ⅰ)设出N的坐标,求出PQ坐标,求出直线的斜率,即可推出结果
(ⅱ)求出直线PM,QM的方程,然后求解B,A坐标,利用AB的斜率求解最小值.
解答 解:(Ⅰ)椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4,焦距为2$\sqrt{2}$.可得a=2,c=$\sqrt{2}$,b=$\sqrt{2}$,
可得椭圆C的方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),设N(-t,0)t>0,M是线段PN的中点,则P(t,2m),过点P作x轴的垂线交C于另一点Q,Q(t,-2m),
(ⅰ)证明:设直线PM,QM的斜率分别为k,k′,
k=$\frac{2m-m}{t-0}$=$\frac{m}{t}$,k′=$\frac{-2m-m}{t-0}$=-$\frac{3m}{t}$,
$\frac{k′}{k}$=$\frac{\frac{-3m}{t}}{\frac{m}{t}}$=-3.为定值;![]()
(ⅱ)由题意可得$\frac{{t}^{2}}{4}+\frac{{m}^{2}}{2}=1$,m2=4-$\frac{1}{2}$t2,QM的方程为:y=-3kx+m,
PN的方程为:y=kx+m,
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\\{y=kx+m}\end{array}\right.$,可得:x2+2(kx+m)2=4,
即:(1+2k2)x2+4mkx+2m2-4=0
可得xA=$\frac{2({m}^{2}-2)}{(2{k}^{2}+1){x}_{Q}}$,yA=$\frac{2({m}^{2}-2)}{(2{k}^{2}+1){x}_{Q}}$+m,
同理解得xB=$\frac{2({m}^{2}-2)}{(18{k}^{2}+1){x}_{Q}}$,
yB=$\frac{-6k({m}^{2}-2)}{(18{k}^{2}+1){x}_{Q}}+m$,
xA-xB=$\frac{2({m}^{2}-2)}{(2{k}^{2}+1){x}_{Q}}$k-$\frac{2({m}^{2}-2)}{(18{k}^{2}+1){x}_{Q}}$=$\frac{-32{k}^{2}({m}^{2}-2)}{(18{k}^{2}+1)(2{k}^{2}+1){x}_{Q}}$,
yA-yB=$\frac{2({m}^{2}-2)}{(2{k}^{2}+1){x}_{Q}}$k+m-($\frac{-6k({m}^{2}-2)}{(18{k}^{2}+1){x}_{Q}}+m$)=$\frac{-8k(6{k}^{2}+1)({m}^{2}-2)}{(18{k}^{2}+1)(2{k}^{2}+1){x}_{Q}}$,
kAB=$\frac{{y}_{B}-{y}_{A}}{{x}_{B}-{x}_{A}}$=$\frac{6{k}^{2}+1}{4k}$=$\frac{1}{4}(6k+\frac{1}{k})$,由m>0,x0>0,可知k>0,
所以6k+$\frac{1}{k}$$≥2\sqrt{6}$,当且仅当k=$\frac{\sqrt{6}}{6}$时取等号.
此时$\frac{m}{\sqrt{4-8{m}^{2}}}=\frac{\sqrt{6}}{6}$,即m=$\frac{\sqrt{14}}{7}$,符合题意.
所以,直线AB的斜率的最小值为:$\frac{\sqrt{6}}{2}$.
点评 本题考查椭圆方程的综合应用,椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k<9 | B. | 9<k<16 | C. | 16<k<25 | D. | k>25 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{2\sqrt{6}}{5}$ | D. | -$\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com