精英家教网 > 高中数学 > 题目详情
1.设${S_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$
(1)写出S1,S2,S3,S4的值,
(2)归纳并猜想出Sn

分析 (1)分别令n=1,2,3,4可以求出S1,S2,S3,S4的值,
(2)从而可猜想{Sn}的一个通项公式,方法一(裂项求和);
方法二:(数学归纳法)按照数学归纳法的证题步骤:先证明n=1时命题成立,再假设当n=k时结论成立,去证明当n=k+1时,结论也成立,从而得出命题an=2n+n对任意的正整数n恒成立.

解答 解:(1∵${S_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$
∴S1=$\frac{1}{1×2}$=$\frac{1}{2}$,S2=$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{2}{3}$,S3=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{3}{4}$,S4=$\frac{4}{5}$,
(2)由(1)可以猜想,Sn=$\frac{n}{n+1}$,
理由如下:方法一(裂项求和):
∵$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$
∴${S_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
方法二:(数学归纳法)
①当n=1时,显然成立,
②假设n=k时成立,即Sk=$\frac{k}{k+1}$,
那么,当n=k+1时,Sk+1=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{k(k+1)}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k(k+2)+1}{(k+1)(k+2)}$=$\frac{(k+1)^{2}}{(k+1)(k+2)}$=$\frac{k+1}{k+1+1}$
所以当n=k+1时,猜想成立,
由①②可知,猜想成立.

点评 本题考查数学归纳法,考查推理证明的能力,假设n=k(k∈N*)时命题成立,去证明则当n=k+1时,用上归纳假设是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在数列{an}中,a1=1,an+1=an+n+1,设数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,若Sn<m对一切正整数n恒成立,则实数m的取值范围为(  )
A.(3,+∞)B.[3,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(1+2$\sqrt{x}$)3(1-$\root{3}{x}$)3的展开式中x的系数是11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把正偶数数列{2n}的数按上小下大,左小右大的原则排列成如图“三角形”所示的数表,设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数(如a42=16),若amn=2012,则$\frac{m}{n}$=$\frac{45}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两枚均匀的骰子一起投掷,记事件A={至少有一枚骰子6点向上},B={两枚骰子都是6点向上},则P(B|A)=(  )
A.$\frac{1}{6}$B.$\frac{1}{36}$C.$\frac{1}{12}$D.$\frac{1}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.参数方程$\left\{\begin{array}{l}{x=sin\frac{α}{2}+cos\frac{α}{2}}\\{y=\sqrt{2+sinα}}\end{array}\right.$(α为参数)表示的普通方程是y2-x2=1(-$\sqrt{2}$≤x≤$\sqrt{2}$,1≤y≤$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为(  )
A.0.6B.0.7C.0.8D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,过点F1的直线l交椭圆于A、B两点,|AB|的最小值为3,且△ABF2的周长为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)点A关于x轴的对称点为A′,直线A′B交x轴于点M,求△ABM面积的取值范围.

查看答案和解析>>

同步练习册答案