精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2|x-2|+ax(x∈R).
(1)当f(x)有最小值时,求a的取值范围;
(2)若函数h(x)=f(sinx)-2存在零点,求a的取值范围.

分析 (1)首先把f(x)写出分段函数,要使得f(x)有最小值,a+2≥0且a-2≤0;
(2)函数h(x)=f(sinx)-2存在零点等价于“方程(a-2)sinx+2=0有解“,亦即$sinx=-\frac{2}{a-2}$有解.

解答 解:(1)$f(x)=\left\{{\begin{array}{l}{({a+2})x-4,x≥2}\\{({a-2})x+4,x<2}\end{array}}\right.$,要使函数f(x)有最小值,
需$\left\{\begin{array}{l}{a+2≥0}\\{a-2≤0}\end{array}\right.$∴-2≤a≤2,故a的取值范围为[-2,2].

(2)∵sinx∈[-1,1],
∴f(sinx)=(a-2)sinx+4,
“h(x)=f(sinx)-2=(a-2)sinx+2存在零点”等价于
“方程(a-2)sinx+2=0有解“,亦即$sinx=-\frac{2}{a-2}$有解,
∴$-1≤-\frac{2}{a-2}≤1$,解得a≤0或a≥4,
∴a的取值范围为(-∞,0]∪[4,+∞).

点评 本题主要考查了绝对值函数与分段函数性质、函数零点、等价转化思想,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=\frac{1}{2}({e^x}-{e^{-x}})$就奇偶性而言是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知2f(-x)+f(x)=x2-x(x≠0),求f(x)的解析式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(1)判断f(x)的奇偶性 
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是(  )
A.A与C互斥B.A、B、C中任何两个均互斥
C.B与C互斥D.A、B、C中任何两个均不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则a的取值范围是(  )
A.$[0,\frac{3}{4}]$B.$(0,\frac{3}{4}]$C.$[0,\frac{3}{4})$D.$(0,\frac{3}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:x+$\frac{2}{x+1}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x3+2x2+x-a恰好有两个不同的零点,则a的值可以为(  )
A.-$\frac{1}{3}$B.-$\frac{1}{9}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|2x-m|(m为常数),对任意x∈R,均有f(x+3)=f(-x)恒成立.有下列说法:
①f(x)是以3为周期的函数;
②若g(x)=f(x)+|2x-b|(b为常数)的图象关于直线x=1对称,则b=1;
③若0<2α<β+2且f(α)=f(β+3),则必有-$\frac{1}{12}$≤3α2+β<$\frac{2}{3}$;
④已知定义在R上的函数F(x)对任意x均有F(x)=F(-x)成立,且当x∈[0,3]时,F(x)=f(x),又函数h(x)=-x2+c(c为常数),若存在x1、x2∈[-1,3]使得|F(x1)-h(x2)|<1成立,则c的取值范围是(-1,13)
其中说法正确的有②③④.

查看答案和解析>>

同步练习册答案