| A. | $(\frac{1}{9},\frac{1}{3})$ | B. | $(-1,-\frac{1}{3})$ | C. | $(-1,-\frac{1}{3})∪(\frac{1}{9},\frac{1}{3})$ | D. | $[{-1,-\frac{1}{3}}]∪[{\frac{1}{9},\frac{1}{3}}]$ |
分析 求出函数的导数,由题意得函数的导数在[1,3]上至少有一个零点,不能有两个相等的零点,即可求出实数a的取值范围.
解答 解:∵f(x)=a2x3+ax2-x
∴f′(x)=3a2x2+2ax-1,
∵若函数f(x)=a2x3+ax2-x在[1,3]上不是单调函数,
∴f′(x)=3a2x2+2ax-1=0在[1,3]上有两个不等的根,或者在[1,3]上由一个根,但是不是重根.
即△=4a2+12a2>0,恒成立.f′(1)f′(3)<0,可得:(3a2+2a-1)(27a2+6a-1)<0
可得:$\left\{\begin{array}{l}{{3a}^{2}+2a-1>0}\\{27{a}^{2}+6a-1<0}\end{array}\right.$,解得a∈∅;或$\left\{\begin{array}{l}{3{a}^{2}+2a-1<0}\\{27{a}^{2}+6a-1>0}\end{array}\right.$,
解得a∈$(-1,-\frac{1}{3})∪(\frac{1}{9},\frac{1}{3})$.
故选:C.
点评 本题考查了利用导数研究三次多项式函数的单调性,从而求参数a的取值范围,属于中档题,解题时应该注意导函数等于0的等根的情形,以免出现只一个零点的误解.
科目:高中数学 来源: 题型:选择题
| A. | a<-1或a>3 | B. | -1<a<3 | C. | -1≤a≤3 | D. | a≤-1或a≥3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6(1-3-8) | B. | $\frac{1}{9}(1-{3^{-8}})$ | C. | 3(1-3-8) | D. | 3(1+3-8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 可能是增函数,也可能是常函数 | B. | 是常函数 | ||
| C. | 是增函数 | D. | 是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x-2)一定是奇函数 | B. | f(x+1)一定是偶函数 | ||
| C. | f(x+3)一定是偶函数 | D. | f(x-3)一定是奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P<M<N | B. | P>M>N | C. | M<P<N | D. | M>P>N |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com