精英家教网 > 高中数学 > 题目详情
13.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点P(3,1),α∈(0,π),β∈(0,π),tan(α-β)=$\frac{sin2(\frac{π}{2}-α)+4co{s}^{2}α}{10co{s}^{2}α+cos(\frac{3π}{2}-2α)}$.
(1)求tan(α-β)的值;
(2)求tan β的值.
(3)求2α-β的值.

分析 (1)由三角函数恒等变换的应用化简等式右边,结合已知即可计算得解.
(2)利用β=(α-β)-α,结合两角差的正切函数公式即可计算得解.
(3)利用两角差的正切函数公式计算可求tan(2α-β)=1,结合范围0<2α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,-π<2α-β<0,即可得解.

解答 解:(1)由已知tanα=$\frac{1}{3}$.
∵tan(α-β)=$\frac{sin2(\frac{π}{2}-α)+4co{s}^{2}α}{10co{s}^{2}α+cos(\frac{3π}{2}-2α)}$=$\frac{sin2α+4cos2α}{10cos2α-sin2α}$=$\frac{2sinαcosα+4cos2α}{10cos2α-2sinαcosα}$=$\frac{2cosα?sinα+2cosα?}{2cosα?5cosα-sinα?}$=$\frac{sinα+2cosα}{5cosα-sinα}$=$\frac{tanα+2}{5-tanα}$=$\frac{{\frac{1}{3}+2}}{{5-\frac{1}{3}}}=\frac{1}{2}$.…(3分)
(2)tan β=-tan[(α-β)-α]=-$\frac{tan(α-β)-tanα}{1+tan(α-β)tanα}$=$\frac{{\frac{1}{2}-\frac{1}{3}}}{{1+\frac{1}{2}•\frac{1}{3}}}=-\frac{1}{7}$.…(7分)
(3)∵tan α=$\frac{1}{3}$>0,
∴0<α<$\frac{π}{2}$,
又∵tan 2α=$\frac{2tanα}{1-tan2α}$=$\frac{2×\frac{1}{3}}{1-(\frac{1}{3})^{2}}$=$\frac{3}{4}$>0,
∴0<2α<$\frac{π}{2}$,
∴tan(2α-β)=$\frac{tan2α-tanβ}{1+tan2αtanβ}$=$\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4}×\frac{1}{7}}$=1.
∵tan β=-$\frac{1}{7}$<0,
∴$\frac{π}{2}$<β<π,-π<2α-β<0,
∴2α-β=-$\frac{3π}{4}$.…(12分)       (如果多个答案,没判断范围扣2分)

点评 本题主要考查了三角函数恒等变换的应用,两角差的正切函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知角α始边与x轴的正半轴重合,终边在直线2x+y=0上,则sin2α=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=a2x3+ax2-x在[1,3]上不单调,则a的取值范围为(  )
A.$(\frac{1}{9},\frac{1}{3})$B.$(-1,-\frac{1}{3})$C.$(-1,-\frac{1}{3})∪(\frac{1}{9},\frac{1}{3})$D.$[{-1,-\frac{1}{3}}]∪[{\frac{1}{9},\frac{1}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow a$=(2,-1),向上平移2个单位,再向左平移1个单位得到向量$\overrightarrow{b}$,则$\overrightarrow{b}$=(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,平面PAD⊥底面ABCD.
(1)求直线PC与平面PBD所成角的正弦值;
(2)求二面角A-PD-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则|z1|=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某自行车手从O点出发,沿折线O-A-B-O匀速骑行,其中点A位于点O南偏东45°且与点O相距20$\sqrt{2}$千米.该车手于上午8点整到达点A,8点20分骑至点C,其中点C位于点O南偏东(45°-α)(其中sinα=$\frac{1}{{\sqrt{26}}}$,0°<α<90°)且与点O相距5$\sqrt{13}$千米(假设所有路面及观测点都在同一水平面上).
(1)求该自行车手的骑行速度;
(2)若点O正西方向27.5千米处有个气象观测站E,假定以点E为中心的3.5千米范围内有长时间的持续强降雨.试问:该自行车手会不会进入降雨区,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在空间直角坐标系中,若A(2,-2,1),B(4,2,3),C(x,y,2)三点共线,则$\left|\overrightarrow{BC}\right|$=(  )
A.$\sqrt{6}$B.$2\sqrt{6}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程x5-x-1=0的一个正零点的存在区间可能是(  )
A.[0,1]B.[1,2]C.[2,3]D.[3,4]

查看答案和解析>>

同步练习册答案