5£®Èçͼ£¬Ä³×ÔÐгµÊÖ´ÓOµã³ö·¢£¬ÑØÕÛÏßO-A-B-OÔÈËÙÆïÐУ¬ÆäÖеãAλÓÚµãOÄÏÆ«¶«45¡ãÇÒÓëµãOÏà¾à20$\sqrt{2}$ǧÃ×£®¸Ã³µÊÖÓÚÉÏÎç8µãÕûµ½´ïµãA£¬8µã20·ÖÆïÖÁµãC£¬ÆäÖеãCλÓÚµãOÄÏÆ«¶«£¨45¡ã-¦Á£©£¨ÆäÖÐsin¦Á=$\frac{1}{{\sqrt{26}}}$£¬0¡ã£¼¦Á£¼90¡ã£©ÇÒÓëµãOÏà¾à5$\sqrt{13}$ǧÃ×£¨¼ÙÉèËùÓÐÂ·Ãæ¼°¹Û²âµã¶¼ÔÚÍ¬Ò»Ë®Æ½ÃæÉÏ£©£®
£¨1£©Çó¸Ã×ÔÐгµÊֵįïÐÐËÙ¶È£»
£¨2£©ÈôµãOÕýÎ÷·½Ïò27.5ǧÃ×´¦ÓиöÆøÏó¹Û²âÕ¾E£¬¼Ù¶¨ÒÔµãEΪÖÐÐĵÄ3.5ǧÃ×·¶Î§ÄÚÓг¤Ê±¼äµÄ³ÖÐøÇ¿½µÓ꣮ÊÔÎÊ£º¸Ã×ÔÐгµÊֻ᲻»á½øÈë½µÓêÇø£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÓàÏÒ¶¨Àí£¬¼´¿ÉÇó³öACµÄ³¤£¬¼´¿ÉÇó³ö×ÔÐгµµÄËÙ¶È£¬
£¨2£©Ïȸù¾ÝÓàÏÒ¶¨Àí£¬¼´¿ÉÇó³öcos¡ÏOAC£¬ÔÙ¸ù¾ÝÕýÏÒ¶¨Àí¿ÉµÃOM£¬ÔÙÔÚRt¡÷EHMÖУ¬Çó³öEMµÄ´óС£¬±È½Ï¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬֪£ºOA=20$\sqrt{2}$£¬OC=5 $\sqrt{13}$£¬
¡ÏAOC=¦Á£¬sin¦Á=$\frac{1}{\sqrt{26}}$£®
ÓÉÓÚ0¡ã£¼¦Á£¼90¡ã£¬ËùÒÔcos=$\sqrt{1-£¨\frac{1}{\sqrt{26}}}£©^{2}$=$\frac{5\sqrt{26}}{26}$£®      
ÓÉÓàÏÒ¶¨Àí£¬µÃAC=$\sqrt{O{A}^{2}+O{C}^{2}-2OA•OC•cos¦Á}$=5$\sqrt{5}$£®  
ËùÒÔ¸Ã×ÔÐгµÊÖµÄÐÐÊ»ËÙ¶ÈΪ$\frac{5\sqrt{5}}{\frac{1}{3}}$=15$\sqrt{5}$ £¨Ç§Ã×/Сʱ£©£®    
£¨2£©Èçͼ£¬ÉèÖ±ÏßOEÓëABÏཻÓÚµãM£®ÔÚ¡÷AOCÖУ¬ÓÉÓàÏÒ¶¨Àí£¬
µÃ£ºcos¡ÏOAC=$\frac{O{A}^{2}+A{C}^{2}-O{C}^{2}}{2OC•AC}$=$\frac{2{0}^{2}¡Á2+{5}^{2}¡Á5-{5}^{2}¡Á13}{2¡Á20\sqrt{2}¡Á5\sqrt{5}}$=$\frac{3\sqrt{10}}{10}$£¬
´Ó¶ø sin¡ÏOAC=$\sqrt{1-\frac{9}{10}}$=$\frac{\sqrt{10}}{10}$£®       
ÔÚ¡÷AOMÖУ¬ÓÉÕýÏÒ¶¨Àí£¬µÃ£ºOM=$\frac{OAsin¡ÏOAM}{sin£¨45¡ã-¡ÏOAM£©}$=$\frac{20\sqrt{2}¡Á\frac{\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}£¨\frac{3\sqrt{10}}{10}-\frac{\sqrt{10}}{10}£©}$=20£¬
ÓÉÓÚOE=27.5£¾40=OM£¬ËùÒÔµãMλÓÚµãOºÍµãEÖ®¼ä£¬ÇÒME=OE-OM=7.5£®
¹ýµãE×÷EH ABÓÚµãH£¬ÔòEHΪµãEµ½Ö±ÏßABµÄ¾àÀ룮
ÔÚRt¡÷EHMÖУ¬EH=EM•sin¡ÏEMH=EM•sin£¨45¡ã-¡ÏOAC£©=7.5¡Á$\frac{\sqrt{5}}{5}$=$\frac{3\sqrt{5}}{2}$£¼3.5£®
ËùÒÔ¸Ã×ÔÐгµÊÖ»á½øÈë½µÓêÇø£®

µãÆÀ ±¾Ì⿼²éÁËÕýÏÒ¶¨ÀíºÍÓàÏÒ¶¨ÀíÒÔ¼°½âÈý½ÇÐεÄÓйØÖªÊ¶£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÊýÁÐ{an}Âú×ã3an+1+an=0£¬${a_3}=\frac{4}{9}$£¬Ôò{an}µÄǰ8ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A£®-6£¨1-3-8£©B£®$\frac{1}{9}£¨1-{3^{-8}}£©$C£®3£¨1-3-8£©D£®3£¨1+3-8£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2£¬£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊý{bn}ÊǵȱÈÊýÁУ¬¹«±ÈΪq£¨q£¾0£©ÇÒb1=S1£¬b4=a2+a3£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª½Ç¦ÁµÄ¶¥µãÓëÔ­µãÖØºÏ£¬Ê¼±ßÓëxÖáµÄÕý°ëÖáÖØºÏ£¬ÖÕ±ßÉÏÒ»µãP£¨3£¬1£©£¬¦Á¡Ê£¨0£¬¦Ð£©£¬¦Â¡Ê£¨0£¬¦Ð£©£¬tan£¨¦Á-¦Â£©=$\frac{sin2£¨\frac{¦Ð}{2}-¦Á£©+4co{s}^{2}¦Á}{10co{s}^{2}¦Á+cos£¨\frac{3¦Ð}{2}-2¦Á£©}$£®
£¨1£©Çótan£¨¦Á-¦Â£©µÄÖµ£»
£¨2£©Çótan ¦ÂµÄÖµ£®
£¨3£©Çó2¦Á-¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ö±ÏßL¹ýÅ×ÎïÏßC£ºx2=4yµÄ½¹µã£¬ÇÒÓëyÖá´¹Ö±£¬ÔòLÓëCËùΧ³ÉµÄͼÐεÄÃæ»ýµÈÓÚ$\frac{8}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª¸´Êý$\frac{4i}{1+i}$£¬ÔòËüÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãÓ¦¸ÃÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚ¡÷ABCÖУ¬A=120¡ã£¬c£¾b£¬a=$\sqrt{21}$£¬S¡÷ABC=$\sqrt{3}$£¬Çó£º
£¨1£©±ßb£¬cµÄÖµ£®
£¨2£©sinB+cosCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ax2+2bx+c£¨x¡ÊR£¬a¡Ù0£©£®
£¨¢ñ£©Èôa=-1£¬c=0£¬ÇÒy=f£¨x£©ÔÚ[-1£¬3]ÉϵÄ×î´óֵΪg£¨b£©£¬Çóg£¨b£©£»
£¨¢ò£©Èôa£¾0£¬º¯Êýf£¨x£©ÔÚ[-8£¬-2]Éϲ»µ¥µ÷£¬ÇÒËüµÄͼÏóÓëxÖáÏàÇУ¬Çó$\frac{b-2a}{f£¨0£©}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®µãP£¨-1£¬6£¬-3£©¹ØÓÚµãM£¨2£¬4£¬5£©µÄ¶Ô³ÆµãµÄ×ø±êΪ£¨5£¬2£¬13£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸