精英家教网 > 高中数学 > 题目详情
5.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且a2>0.
(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)若bn=$\frac{{a}_{n}}{{3}^{n}}$(n∈N),求数列|bn|的前n项和Tn

分析 (1)依题意,由4a1=(a1+1)2,4S2=4(a1+a2)=(a2+1)2,即得结论;
(2)当n≥2时,4an=$4({S}_{n}-{S}_{n-1})={{a}_{n}}^{2}-{{a}_{n-1}}^{2}+2({a}_{n}-{a}_{n-1})$,从而可得an-an-1=2,所以an=2n-1;
(3)由bn=$\frac{2n-1}{{3}^{n}}$(n∈N),可得Tn、$\frac{1}{3}{T}_{n}$,计算可得$\frac{2}{3}{T}_{n}$,从而可得Tn=$1-\frac{n+1}{{3}^{n}}$.

解答 解:(1)依题意,4a1=(a1+1)2,4S2=4(a1+a2)=(a2+1)2
所以a1=1,a2=3或-1(舍去);
(2)当n≥2时,由4Sn=(an+1)2,4Sn-1=(an-1+1)2
可知4an=$4({S}_{n}-{S}_{n-1})={{a}_{n}}^{2}-{{a}_{n-1}}^{2}+2({a}_{n}-{a}_{n-1})$,
所以(an-an-1)(an+an-1)-2(an+an-1)=0,
∵an>0,∴an-an-1=2,
所以数列{an}是以1为首项,2为公差的等差数列,
即an=1+2(n-1)=2n-1(n∈N*);
(3)∵bn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n-1}{{3}^{n}}$(n∈N),
∴Tn=$\frac{1}{3}+\frac{3}{{3}^{2}}+…+\frac{2n-3}{{3}^{n-1}}+\frac{2n-1}{{3}^{n}}$,
则$\frac{1}{3}{T}_{n}$=$\frac{1}{{3}^{2}}$+$\frac{3}{{3}^{3}}$+…+$\frac{2n-3}{{3}^{n}}$+$\frac{2n-1}{{3}^{n+1}}$,
两式相减,得$\frac{2}{3}{T}_{n}$=$\frac{1}{3}+2(\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}})-\frac{2n-1}{{3}^{n+1}}$
=$\frac{1}{3}+2•\frac{\frac{1}{{3}^{2}}-\frac{1}{3}•\frac{1}{{3}^{n}}}{1-\frac{1}{3}}-\frac{2n-1}{{3}^{n+1}}$,
所以Tn=$1-\frac{2n+2}{2•{3}^{n}}$=$1-\frac{n+1}{{3}^{n}}$.

点评 本题考查求通项公式以及数列的前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知复数$z=\frac{3-2i}{{{i^{2015}}}}$(i是虚数单位),则复数z所对应的点的坐标为(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=x-alnx,函数f(x)有两个零点x1,x2.且x1<x2.求$\frac{{x}_{2}}{{x}_{1}}$随a的变化情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M=|x|2x-3<1|,集合N=|x|-1<x<3|,则M∩N=(  )
A.MB.NC.|x|-1<x<2|D.|x|x<3|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学准备组织学生去国家体育场“鸟巢”参观,参观期间,校车每天至少要运送480名学生.该中学后勤集团有7辆小巴、4辆大巴,其中小巴能载16人、大巴能载32人. 已知每辆客车每天往返次数小巴为5次、大巴为3次,每次运输成本小巴为48元,大巴为60元.请问每天应派出小巴、大巴各多少辆,能使总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x||x-3|<4},集合N={x|$\frac{x+2}{x-1}$≤0,x∈Z},那么M∩N=(  )
A.{x|-1<x≤1}B.{-1,0}C.{0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设反比例函数f(x)=$\frac{1}{x}$与二次函数g(x)=ax2+bx的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),且x1<x2,则$\frac{y_1}{y_2}$=(  )
A.2或$\frac{1}{2}$B.-2或$-\frac{1}{2}$C.2或$-\frac{1}{2}$D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是两个共线向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,求证:$\overrightarrow{a}$∥$\overrightarrow{b}$.

查看答案和解析>>

同步练习册答案