精英家教网 > 高中数学 > 题目详情
1.若0<x<y<1,则(  )
A.3y<3xB.x0.5<y0.5C.logx3<logy3D.log0.5x<log0.5y

分析 根据初等基本函数的单调性即可判断.

解答 解:因为:0<x<y<1,y=3x为增函数,则3y>3x,故A错误,
因为:0<x<y<1,y=x0.5为增函数,则x0.5>x0.5,故B正确,
因为:0<x<y<1则logx3>logy3,故C错误,
因为:0<x<y<1,log0.5x为减函数,则log0.5x>log0.5y,故D错误,
故选:D.

点评 本题考查了初等函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若在△ABC中,∠A=30°,b=3,S△ABC=$\sqrt{3}$,则$\frac{a+b+c}{sinA+sinB+sinC}$=(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{21}}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$13\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A={x|x2-2x-8<0,x∈Z},
(1)从集合A中任取两个元素a,b且a•b≠0,写出全部可能的基本结果;  
(2)求方程$\frac{x^2}{a}$+$\frac{y^2}{b}$=1表示焦点在x轴上的椭圆的概率;   
(3)若A={x|x2-2x-8<0},求方程$\frac{x^2}{a}$+$\frac{y^2}{b}$=1表示焦点在x轴上的椭圆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=log2x+3的值域是(  )
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一般地,若f(x)的定义域为[a,b],值域为[ka,kb],(a<b),则称[a,b]为函数f(x)的“k倍保值区间”.特别地,若f(x)的定义域为[a,b],值域也为[a,b],(a<b),则称[a,b]为函数f(x)的“保值区间”.
(1)若[1,b]为g(x)=$\frac{1}{2}{x^2}-x+\frac{3}{2}$的保值区间,求常数b的值;
(2)问是否存在常数a,b(a>-2)使函数h(x)=$\frac{1}{x+2}$的保值区间为[a,b]?若存在,求出a,b的值,否则,请说明理由.
(3)求函数p(x)=$\frac{1}{2}$x2+$\frac{13}{2}$的2倍保值区间[a,b].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左顶点为A,直线l与椭圆C分别相交于M,N两点.
(Ⅰ)若直线l过椭圆C右焦点且$\overrightarrow{AM}$•$\overrightarrow{AN}$=6,求直线l的方程;
(Ⅱ)若直线l垂直于x轴,P是椭圆上不与椭圆顶点重合的任意一点,直线MP,NP分别交x轴于点E(m,0),F(n,0),探究m•n是否为定值,若为定值,求出该定值,若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设α是锐角,3个实数1,sinα+cosα,sinαcosα中最大的是sinα+cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知p:x2-2x-3≤0;$q:\frac{1}{x-2}≤0$,若p且q为真,则x的取值范围是-1≤x<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设全集A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A∩B={0}时,求实数a的值;
(2)如果A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案