精英家教网 > 高中数学 > 题目详情

【题目】已知是定义域为的偶函数,对,有,且当时,,函数.现给出以下命题:①是周期函数;②的图象关于直线对称;③当时,内有一个零点;④当时,上至少有六个零.其中正确命题的序号为________.

【答案】①②④

【解析】

①根据,有,利用周期函数的定义判断;②根据是定义域为的偶函数,有,再结合判断;③令,即,在同一坐标系中作出,用数形结合法判断;④在同一坐标系中作出,用数形结合法判断.

①因为对,有,所以是周期函数,故正确;

②因为是定义域为的偶函数,所以,又因为对,有,所以,即,所以的图象关于直线对称,故正确;

③当时,令

,在同一坐标系中作出

的图象如图所示:

所以内无零点,故错误;

④当时,令

在同一坐标系中作出

的图象如下图所示:

时,至少有三个交点,

为偶函数,

至少有六个交点,

所以上至少有六个零点,故正确.

所以正确命题的序号为①②④

故答案为:①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列:Aa1a2,…,anBb1b2,…,bn.已知aibj∈{01}(i=12,…,nj=12,…,n),定义n×n数表,其中xij.

(1)若A1110B0100,写出XAB);

(2)若AB是不同的数列,求证:n×n数表XAB)满足“xij=xjii=12,…,nj=12,…,nij)”的充分必要条件为“ak+bk=1k=12,…,n)”;

(3)若数列AB中的1共有n个,求证:n×n数表XAB)中1的个数不大于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一颗棋子从三棱柱的一个项点沿棱移到相邻的另一个顶点的概率均为,刚开始时,棋子在上底面点处,若移了次后,棋子落在上底面顶点的概率记为.

1)求的值:

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点个数;

2)若有两个极值点,试判断的大小关系并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,的中点为O,且平面

1)证明:

2)若,求到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中,,△为等边三角形,二面角的余弦值为,当三棱锥的体积最大时,其外接球的表面积为.则三棱锥体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为4的菱形,∠BAD=60°,对角线ACBD相交于点O,四边形ACFE为梯形,EF//AC,点E在平面ABCD上的射影为OA的中点,AE与平面ABCD所成角为45°.

(Ⅰ)求证:BD⊥平面ACF

(Ⅱ)求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E)的焦点为,以原点O为圆心,椭圆E的短半轴长为半径的圆与直线相切.

1)求椭圆E的方程;

2)过点F的直线l交椭圆EMN两点,点P的坐标为,直线x轴交于A点,直线x轴交于B点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一条曲线Cy轴右侧,曲线C上任意一点到点的距离减去它到y轴的距离都等于1.

1)求曲线C的方程;

2)直线与轨迹C交于AB两点,问:在x轴上是否存在定点,使得直线关于x轴对称而与直线的位置无关,若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案