【题目】如图,三棱柱
中,侧面
为菱形,
的中点为O,且
平面
.
![]()
(1)证明:
;
(2)若
,
,
,求
到平面ABC的距离.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过右焦点F的直线L与C相交于A、B两点,当L的斜率为1时,坐标原点O到L的距离为
.
(1)求椭圆的标准方程;
(2)在C上是否存在点P,使得当L绕F转到某一位置时,有
成立?若存在,求出所有的P的坐标与L的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】金刚石是碳原子的一种结构晶体,属于面心立方晶胞(晶胞是构成晶体的最基本的几何单元),即碳原子处在立方体的
个顶点,
个面的中心,此外在立方体的对角线的
处也有
个碳原子,如图所示(绿色球),碳原子都以共价键结合,原子排列的基本规律是每一个碳原子的周围都有
个按照正四面体分布的碳原子.设金刚石晶胞的棱长为
,则正四面体
的棱长为__________;正四面体
的外接球的体积是__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是定义域为
的偶函数,对
,有
,且当
时,
,函数
.现给出以下命题:①
是周期函数;②
的图象关于直线
对称;③当
时,
在
内有一个零点;④当
时,
在
上至少有六个零.其中正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z1(单位:分钟)服从正态分布N(33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z2(单位:分钟)服从正态分布N(44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.
参考数据:若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】今年情况特殊,小王在居家自我隔离时对周边的水产养殖产业进行了研究.
、
两个投资项目的利润率分别为投资变量
和
.根据市场分析,
和
的分布列分别为:
| 5% | 10% | ||
| 0.8 | 0.2 | ||
| 2% | 8% | 12% | |
| 0.2 | 0.5 | 0.3 | |
(1)若在
两个项目上各投资
万元,
和
分别表示投资项目
和
所获得的利润,求方差
,
;
(2)若在
两个项目上共投资
万元,那么如何分配,能使投资
项目所得利润的方差与投资
项目所得利润的方差的和最小,最小值是多少?
(注:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
,
,
,
分别为
,
的中点
是由
绕直线
旋转得到,连结
,
,
.
![]()
(1)证明:
平面
;
(2)若
,棱
上是否存在一点
,使得
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com