17£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¬£¨a£¾b£¾0£©£¬FΪÆä×󽹵㣬A1£¬A2·Ö±ðΪÆä³¤ÖáµÄ×óÓҶ˵㣬B1ΪÆä¶ÌÖáµÄÒ»¸ö¶Ëµã£¬ÈôÔ­µãOµ½Ö±ÏßFB1µÄ¾àÀë$d=\frac{{\sqrt{6}}}{3}$£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊ$e=\frac{{\sqrt{6}}}{3}$£»
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýA1бÂÊΪk£¨k¡Ù0£©µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚÒìÓÚµãA1µÄµãC£¬ÓÖ¹ýA2×÷A2D¡ÍlÓÚDµã£»
¢¡£®Èô$\overrightarrow{{A_1}D}=2\overrightarrow{{A_1}C}$£¬ÇóÖ±ÏßlµÄ·½³Ì£»
¢¢£®ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£¿Èç´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èç²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖª¿ÉµÃ$\left\{\begin{array}{l}{{c}^{2}={a}^{2}-{b}^{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\end{array}\right.$£¬µÃµ¼$a=\frac{\sqrt{6}}{2}c£¬b=\frac{\sqrt{2}}{2}c$£¬ÔÚ¡÷FOB1 ÖУ¬ÓɵȻý·¨µÃ$\frac{1}{2}bc=\frac{1}{2}a¡Á\frac{\sqrt{6}}{3}$£¬ÁªÁ¢ÇóµÃa£¬bµÄ×îÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©¢¡£®ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x+$\sqrt{3}$£©£¬C£¨xC£¬yC£©£¬D£¨xD£¬yD£©£¬ÓÉÒÑÖªÓÐA1£¨$-\sqrt{3}$£¬0£©£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇóµÃCµÄºá×ø±ê£¬ÔÙÇó³öDµãµÄ¹ì¼£·½³Ì£¬ÁªÁ¢Ö±Ïß·½³ÌÓëDµÄ¹ì¼£·½³Ì£¬½áºÏÏòÁ¿µÈʽÇó³öCµÄºá×ø±ê£¬ÓÉCµÃºá×ø±êÏàµÈ¿ÉµÃk=¡À1£®¹ÊÖ±ÏßlµÄ·½³Ì¿ÉÇó£»
¢¢£®ÓÉDµãµÄ¹ì¼£·½³ÌΪ£ºx2+y2=3ÇóµÃ£º$|{A}_{1}D{|}^{2}=4£¨3-\frac{3{k}^{2}}{1+{k}^{2}}£©=\frac{12}{1+{k}^{2}}$£®ÔÙÓÉÃæ»ý±È¿ÉµÃ${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$=$\frac{12}{1+{k}^{2}}+¦Ë\frac{|{y}_{D}|}{|{y}_{C}|}=\frac{12}{1+{k}^{2}}+¦Ë\frac{1+3{k}^{2}}{1+{k}^{2}}$=$\frac{12+¦Ë+3¦Ë{k}^{2}}{1+{k}^{2}}$£®ÓÉ${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£¬Ôò12+¦Ë=3¦Ë£¬½âµÃ¦Ë=6£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{{c}^{2}={a}^{2}-{b}^{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\end{array}\right.$£¬µÃ£º$a=\frac{\sqrt{6}}{2}c£¬b=\frac{\sqrt{2}}{2}c$£¬¢Ù
ÔÚ¡÷FOB1 ÖУ¬ÓɵȻý·¨µÃ£º$\frac{1}{2}bc=\frac{1}{2}a¡Á\frac{\sqrt{6}}{3}$£¬¢Ú
ÁªÁ¢¢Ù£¬¢Ú½âµÃ$a=\sqrt{3}£¬b=1£¬c=\sqrt{2}$£®
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨2£©¢¡£®ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x+$\sqrt{3}$£©£¬C£¨xC£¬yC£©£¬D£¨xD£¬yD£©£¬
ÓÉÒÑÖªÓÐA1£¨$-\sqrt{3}$£¬0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x+\sqrt{3}£©}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬µÃ£º$£¨1+3{k}^{2}£©{x}^{2}+6\sqrt{3}{k}^{2}x+9{k}^{2}-3=0$£®
¡à${x}_{C}=\frac{-6\sqrt{3}{k}^{2}}{1+3{k}^{2}}+\sqrt{3}=\frac{\sqrt{3}-3\sqrt{3}{k}^{2}}{1+3{k}^{2}}$£®
ÓÉÒÑÖª£ºDµãµÄ¹ì¼£·½³ÌΪ£ºx2+y2=3£¬
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=3}\\{y=k£¨x+\sqrt{3}£©}\end{array}\right.$£¬µÃ£º$£¨1+{k}^{2}£©{x}^{2}+2\sqrt{3}{k}^{2}x+3{k}^{2}-3=0$£®
¡à${x}_{{A}_{1}}+{x}_{D}=\frac{-2\sqrt{3}{k}^{2}}{1+{k}^{2}}$£®
ÓÉ$\overrightarrow{{A_1}D}=2\overrightarrow{{A_1}C}$£¬ÓÐCΪA1DµÄÖе㣬
¡à$2{x}_{C}={x}_{{A}_{1}}+{x}_{D}$£¬¹Ê$\frac{2\sqrt{3}-6\sqrt{3}{k}^{2}}{1+3{k}^{2}}=\frac{-2\sqrt{3}{k}^{2}}{1+{k}^{2}}$£¬
¡à$\frac{3{k}^{2}-1}{1+3{k}^{2}}=\frac{{k}^{2}}{1+{k}^{2}}$£¬½âµÃ£ºk=¡À1£®
¹ÊÖ±ÏßlµÄ·½³ÌΪx-y+$\sqrt{3}$=0»òx+y+$\sqrt{3}=0$£»
¢¢£®ÓÉDµãµÄ¹ì¼£·½³ÌΪ£ºx2+y2=3£¬µÃ£º$|{A}_{1}D{|}^{2}=4£¨3-\frac{3{k}^{2}}{1+{k}^{2}}£©=\frac{12}{1+{k}^{2}}$£®
ÓÖ${S}_{¡÷{A}_{1}OD}=\frac{1}{2}{A}_{1}O•|{y}_{D}|$£¬${S}_{¡÷{A}_{1}OC}=\frac{1}{2}{A}_{1}O•|{y}_{C}|$£¬
¹Ê$\frac{{S}_{¡÷{A}_{1}OD}}{{S}_{¡÷{A}_{1}OC}}=\frac{{y}_{D}}{{y}_{C}}$£¬ÓÉ¢¡¿É½âµÃ£º$|{y}_{D}|=\frac{|2\sqrt{3}k|}{1+{k}^{2}}$£¬$|{y}_{C}|=\frac{|2\sqrt{3}k|}{1+3{k}^{2}}$£¬
${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$=$\frac{12}{1+{k}^{2}}+¦Ë\frac{|{y}_{D}|}{|{y}_{C}|}=\frac{12}{1+{k}^{2}}+¦Ë\frac{1+3{k}^{2}}{1+{k}^{2}}$=$\frac{12+¦Ë+3¦Ë{k}^{2}}{1+{k}^{2}}$£®
Ҫʹ${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£¬Ôò12+¦Ë=3¦Ë£¬½âµÃ¦Ë=6£®
¹Ê´æÔÚʵÊý¦Ë=6£¬Ê¹${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÔ²¡¢ÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÂß¼­Ë¼Î¬ÄÜÁ¦ÓëÍÆÀíÔËËãÄÜÁ¦£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÅ×ÎïÏßC£ºy2=8xµÄ½¹µãΪF£¬×¼ÏßΪ1£¬QÊÇÖ±ÏßlÉϵÄÒ»µã£¬PÊÇÖ±ÏßQFÓëCµÄÒ»¸ö½»µã£¬Èô$\overrightarrow{QF}$=4$\overrightarrow{PF}$£¬Ôò¡÷POF£¨OÎª×ø±êÔ­µã£©µÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2B£®2$\sqrt{3}$C£®$\sqrt{2}$D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{2x+y¡Ü2}\\{x¡Ý0}\\{x+y¡Ý0}\end{array}\right.$£¬z=£¨x+1£©2+£¨y+2£©2£¬ÔòzµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{3\sqrt{2}}{2}$B£®$\frac{9}{2}$C£®$\sqrt{5}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éè·Ç¿Õ¼¯ºÏS={x|m¡Üx¡Ül}Âú×㣺µ±x¡ÊSʱ£¬ÓÐx2¡ÊS£®¸ø³öÒÔÏÂÈý¸öÃüÌ⣺¢ÙÈôm=1£¬ÔòS={1}£»¢ÚÈô$m=-\frac{1}{2}$£¬Ôò$\frac{1}{4}¡Ül¡Ü1$£»¢ÛÈô$l=\frac{1}{2}$£¬Ôò$-\frac{{\sqrt{2}}}{2}¡Üm¡Ü0$£®ÆäÖÐÕýÈ·µÄÃüÌâ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®y=cos2x-1£¬Ôòf£¨x£©ÊÇ£¨¡¡¡¡£©
A£®×îСÕýÖÜÆÚΪ¦ÐµÄÆæº¯ÊýB£®×îСÕýÖÜÆÚΪ¦ÐµÄżº¯Êý
C£®×îСÕýÖÜÆÚΪ2¦ÐµÄÆæº¯ÊýD£®×îСÕýÖÜÆÚΪ2¦ÐµÄżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ£¨x-1£©£¨x-2£©£¨x-3£©£¨x-4£©£¨x-5£©£¨x-6£©£¨x-7£©£¨x-8£©µÄÕ¹¿ªÊ½ÖУ¬º¬x7µÄÏîµÄϵÊýÊÇ-36£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ó÷´Ö¤·¨Ö¤Ã÷ÃüÌ⣺¡°Èý½ÇÐÎÈý¸öÄÚ½ÇÖÁÉÙÓÐÒ»¸ö²»´óÓÚ60¡ã¡±Ê±£¬Ó¦¼ÙÉ裨¡¡¡¡£©
A£®Èý¸öÄڽǶ¼²»´óÓÚ 60¡ãB£®Èý¸öÄÚ½ÇÖÁ¶àÓÐÒ»¸ö´óÓÚ 60¡ã
C£®Èý¸öÄڽǶ¼´óÓÚ60¡ãD£®Èý¸öÄÚ½ÇÖÁ¶àÓÐÁ½¸ö´óÓÚ 60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¹ýµã£¨1£¬0£©ÇÒÓëÖ±Ïßy=$\frac{1}{2}$x-1ƽÐеÄÖ±Ïß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x-2y-1=0B£®x-2y+1=0C£®2x+y-2=0D£®x+2y-1=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®y=$\sqrt{lo{g}_{\frac{1}{2}}£¨3x-2£©}$µÄ¶¨ÒåÓòÊÇ£¨$\frac{2}{3}£¬1$]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸