·ÖÎö £¨1£©ÓÉÒÑÖª¿ÉµÃ$\left\{\begin{array}{l}{{c}^{2}={a}^{2}-{b}^{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\end{array}\right.$£¬µÃµ¼$a=\frac{\sqrt{6}}{2}c£¬b=\frac{\sqrt{2}}{2}c$£¬ÔÚ¡÷FOB1 ÖУ¬ÓɵȻý·¨µÃ$\frac{1}{2}bc=\frac{1}{2}a¡Á\frac{\sqrt{6}}{3}$£¬ÁªÁ¢ÇóµÃa£¬bµÄ×îÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©¢¡£®ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x+$\sqrt{3}$£©£¬C£¨xC£¬yC£©£¬D£¨xD£¬yD£©£¬ÓÉÒÑÖªÓÐA1£¨$-\sqrt{3}$£¬0£©£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇóµÃCµÄºá×ø±ê£¬ÔÙÇó³öDµãµÄ¹ì¼£·½³Ì£¬ÁªÁ¢Ö±Ïß·½³ÌÓëDµÄ¹ì¼£·½³Ì£¬½áºÏÏòÁ¿µÈʽÇó³öCµÄºá×ø±ê£¬ÓÉCµÃºá×ø±êÏàµÈ¿ÉµÃk=¡À1£®¹ÊÖ±ÏßlµÄ·½³Ì¿ÉÇó£»
¢¢£®ÓÉDµãµÄ¹ì¼£·½³ÌΪ£ºx2+y2=3ÇóµÃ£º$|{A}_{1}D{|}^{2}=4£¨3-\frac{3{k}^{2}}{1+{k}^{2}}£©=\frac{12}{1+{k}^{2}}$£®ÔÙÓÉÃæ»ý±È¿ÉµÃ${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$=$\frac{12}{1+{k}^{2}}+¦Ë\frac{|{y}_{D}|}{|{y}_{C}|}=\frac{12}{1+{k}^{2}}+¦Ë\frac{1+3{k}^{2}}{1+{k}^{2}}$=$\frac{12+¦Ë+3¦Ë{k}^{2}}{1+{k}^{2}}$£®ÓÉ${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£¬Ôò12+¦Ë=3¦Ë£¬½âµÃ¦Ë=6£®
½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{{c}^{2}={a}^{2}-{b}^{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\end{array}\right.$£¬µÃ£º$a=\frac{\sqrt{6}}{2}c£¬b=\frac{\sqrt{2}}{2}c$£¬¢Ù
ÔÚ¡÷FOB1 ÖУ¬ÓɵȻý·¨µÃ£º$\frac{1}{2}bc=\frac{1}{2}a¡Á\frac{\sqrt{6}}{3}$£¬¢Ú
ÁªÁ¢¢Ù£¬¢Ú½âµÃ$a=\sqrt{3}£¬b=1£¬c=\sqrt{2}$£®
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨2£©¢¡£®ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x+$\sqrt{3}$£©£¬C£¨xC£¬yC£©£¬D£¨xD£¬yD£©£¬![]()
ÓÉÒÑÖªÓÐA1£¨$-\sqrt{3}$£¬0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x+\sqrt{3}£©}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬µÃ£º$£¨1+3{k}^{2}£©{x}^{2}+6\sqrt{3}{k}^{2}x+9{k}^{2}-3=0$£®
¡à${x}_{C}=\frac{-6\sqrt{3}{k}^{2}}{1+3{k}^{2}}+\sqrt{3}=\frac{\sqrt{3}-3\sqrt{3}{k}^{2}}{1+3{k}^{2}}$£®
ÓÉÒÑÖª£ºDµãµÄ¹ì¼£·½³ÌΪ£ºx2+y2=3£¬
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=3}\\{y=k£¨x+\sqrt{3}£©}\end{array}\right.$£¬µÃ£º$£¨1+{k}^{2}£©{x}^{2}+2\sqrt{3}{k}^{2}x+3{k}^{2}-3=0$£®
¡à${x}_{{A}_{1}}+{x}_{D}=\frac{-2\sqrt{3}{k}^{2}}{1+{k}^{2}}$£®
ÓÉ$\overrightarrow{{A_1}D}=2\overrightarrow{{A_1}C}$£¬ÓÐCΪA1DµÄÖе㣬
¡à$2{x}_{C}={x}_{{A}_{1}}+{x}_{D}$£¬¹Ê$\frac{2\sqrt{3}-6\sqrt{3}{k}^{2}}{1+3{k}^{2}}=\frac{-2\sqrt{3}{k}^{2}}{1+{k}^{2}}$£¬
¡à$\frac{3{k}^{2}-1}{1+3{k}^{2}}=\frac{{k}^{2}}{1+{k}^{2}}$£¬½âµÃ£ºk=¡À1£®
¹ÊÖ±ÏßlµÄ·½³ÌΪx-y+$\sqrt{3}$=0»òx+y+$\sqrt{3}=0$£»
¢¢£®ÓÉDµãµÄ¹ì¼£·½³ÌΪ£ºx2+y2=3£¬µÃ£º$|{A}_{1}D{|}^{2}=4£¨3-\frac{3{k}^{2}}{1+{k}^{2}}£©=\frac{12}{1+{k}^{2}}$£®
ÓÖ${S}_{¡÷{A}_{1}OD}=\frac{1}{2}{A}_{1}O•|{y}_{D}|$£¬${S}_{¡÷{A}_{1}OC}=\frac{1}{2}{A}_{1}O•|{y}_{C}|$£¬
¹Ê$\frac{{S}_{¡÷{A}_{1}OD}}{{S}_{¡÷{A}_{1}OC}}=\frac{{y}_{D}}{{y}_{C}}$£¬ÓÉ¢¡¿É½âµÃ£º$|{y}_{D}|=\frac{|2\sqrt{3}k|}{1+{k}^{2}}$£¬$|{y}_{C}|=\frac{|2\sqrt{3}k|}{1+3{k}^{2}}$£¬
${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$=$\frac{12}{1+{k}^{2}}+¦Ë\frac{|{y}_{D}|}{|{y}_{C}|}=\frac{12}{1+{k}^{2}}+¦Ë\frac{1+3{k}^{2}}{1+{k}^{2}}$=$\frac{12+¦Ë+3¦Ë{k}^{2}}{1+{k}^{2}}$£®
Ҫʹ${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£¬Ôò12+¦Ë=3¦Ë£¬½âµÃ¦Ë=6£®
¹Ê´æÔÚʵÊý¦Ë=6£¬Ê¹${|{{A_1}D}|^2}+¦Ë\frac{{{S_{¡÷{A_1}OD}}}}{{{S_{¡÷{A_1}OC}}}}$Ϊ³£Êý£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÔ²¡¢ÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÂ߼˼άÄÜÁ¦ÓëÍÆÀíÔËËãÄÜÁ¦£¬ÄѶȽϴó£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 2$\sqrt{3}$ | C£® | $\sqrt{2}$ | D£® | 2$\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3\sqrt{2}}{2}$ | B£® | $\frac{9}{2}$ | C£® | $\sqrt{5}$ | D£® | 5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ×îСÕýÖÜÆÚΪ¦ÐµÄÆæº¯Êý | B£® | ×îСÕýÖÜÆÚΪ¦ÐµÄżº¯Êý | ||
| C£® | ×îСÕýÖÜÆÚΪ2¦ÐµÄÆæº¯Êý | D£® | ×îСÕýÖÜÆÚΪ2¦ÐµÄżº¯Êý |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èý¸öÄڽǶ¼²»´óÓÚ 60¡ã | B£® | Èý¸öÄÚ½ÇÖÁ¶àÓÐÒ»¸ö´óÓÚ 60¡ã | ||
| C£® | Èý¸öÄڽǶ¼´óÓÚ60¡ã | D£® | Èý¸öÄÚ½ÇÖÁ¶àÓÐÁ½¸ö´óÓÚ 60¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x-2y-1=0 | B£® | x-2y+1=0 | C£® | 2x+y-2=0 | D£® | x+2y-1=0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com