精英家教网 > 高中数学 > 题目详情
9.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设(  )
A.三个内角都不大于 60°B.三个内角至多有一个大于 60°
C.三个内角都大于60°D.三个内角至多有两个大于 60°

分析 熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.

解答 解:∵用反证法证明在一个三角形中,至少有一个内角不大于60°,
∴第一步应假设结论不成立,
即假设三个内角都大于60°.
故选:C.

点评 此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=($\frac{1}{2}$)x,则f(log2$\sqrt{5}$)=(  )
A.3B.$\frac{\sqrt{5}}{5}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设F为抛物线y2=2px(p>0)的焦点,A、B、C为该抛物线上三点,若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,且|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+$\overrightarrow{FC}$|=6,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,(a>b>0),F为其左焦点,A1,A2分别为其长轴的左右端点,B1为其短轴的一个端点,若原点O到直线FB1的距离$d=\frac{{\sqrt{6}}}{3}$,且椭圆的离心率$e=\frac{{\sqrt{6}}}{3}$;
(1)求椭圆的方程;
(2)过A1斜率为k(k≠0)的直线l与椭圆交于异于点A1的点C,又过A2作A2D⊥l于D点;
ⅰ.若$\overrightarrow{{A_1}D}=2\overrightarrow{{A_1}C}$,求直线l的方程;
ⅱ.是否存在实数λ,使${|{{A_1}D}|^2}+λ\frac{{{S_{△{A_1}OD}}}}{{{S_{△{A_1}OC}}}}$为常数?如存在,求出λ的值;如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{4}{3}$x3+2ax2+2ax+1在R上是增函数,则a的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合$M=\{y|y={x^{-2}}\},P=\{x|y=\sqrt{x-1}\},则P∩M$(  )
A.(1,+∞)B.[1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,
AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)若 B1C1⊥平面CEC1,求二面角B1-CE-C1的余弦值;
(Ⅱ)在线段C1E上是否存在一点M,使得直线AM与平面ADD1A1所成角的正弦值为$\frac{{\sqrt{2}}}{6}$,若存在,求EM:MC1的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+2|+|x-3|.
(Ⅰ)求不等式f(x)<6的解集;
(Ⅱ)若关于的不等式f(x)≥|2a+1|恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{6}sin\frac{x}{2}cos\frac{x}{2}-\sqrt{2}{cos^2}\frac{x}{2}$.
(1)将函数f(x)化简成$Asin(ωx+φ)+B(其中A>0,ω>0,|φ|<\frac{π}{2})$的形式;
(2)求f(x)的单调递增区间;
(3)求函数f(x)在$[\frac{π}{2},π]$上的最大值和最小值.

查看答案和解析>>

同步练习册答案