精英家教网 > 高中数学 > 题目详情
19.函数f(x)=($\frac{1}{2}$)x,则f(log2$\sqrt{5}$)=(  )
A.3B.$\frac{\sqrt{5}}{5}$C.$\sqrt{15}$D.4

分析 推导出f(log2$\sqrt{5}$)=($\frac{1}{2}$)${\;}^{lo{g}_{2}\sqrt{5}}$,由此利用对数性质能求出结果.

解答 解:∵函数f(x)=($\frac{1}{2}$)x
∴f(log2$\sqrt{5}$)=($\frac{1}{2}$)${\;}^{lo{g}_{2}\sqrt{5}}$=$\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$.
故选:B.

点评 本题考查函数值的求法,考查对数的性质及应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=135°,CD=30m,并在点C处测得塔顶A的仰角为30°,则塔高AB
为(  )
A.10$\sqrt{2}$ mB.10$\sqrt{3}$ mC.15$\sqrt{6}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线y2=4x的焦点为F,抛物线上一点M在其准线上的射影为N,若∠NMF=$\frac{2π}{3}$,则M点的横坐标系是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=8x的焦点为F,准线为1,Q是直线l上的一点,P是直线QF与C的一个交点,若$\overrightarrow{QF}$=4$\overrightarrow{PF}$,则△POF(O为坐标原点)的面积为(  )
A.2B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知φ:$\frac{x-1}{x+2}$≤0,ξ:使函数f(x)=lg(3-x)(x+a)有意义的x,若φ是ξ的充分不必要条件,则a的取值范围是(  )
A.a≥-1B.a≥-2C.a≥2D.a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦点到直线$\sqrt{2}$x-y=0的距离是:$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.84,则P(ξ≤-2)=0.16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{x+y≥0}\end{array}\right.$,z=(x+1)2+(y+2)2,则z的最小值为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设(  )
A.三个内角都不大于 60°B.三个内角至多有一个大于 60°
C.三个内角都大于60°D.三个内角至多有两个大于 60°

查看答案和解析>>

同步练习册答案