精英家教网 > 高中数学 > 题目详情
11.已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.84,则P(ξ≤-2)=0.16.

分析 根据正态分布的对称性特点计算.

解答 解:P(ξ≤-2)=P(ξ≥4)=1-0.84=0.16.
故答案为:0.16.

点评 本题考查了正态分布,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如果$\overrightarrow{a}$、$\overrightarrow{b}$是两个单位向量,那么下列四个结论中正确的是(  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$•$\overrightarrow{b}$=1C.$\overrightarrow{a}$=-$\overrightarrow{b}$D.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为B,Q点坐标为(3,0),且$\overrightarrow{{F}_{1}B}$•$\overrightarrow{QB}$=0,2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{Q{F}_{1}}$=0.
(1)求椭圆C的标准方程;
(2)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=($\frac{1}{2}$)x,则f(log2$\sqrt{5}$)=(  )
A.3B.$\frac{\sqrt{5}}{5}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=asin2x-cos2x+sin2x过点($\frac{π}{6}$,1).
(1)求a的值,并写出f(x)的单调递增区间;
(2)若α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),f($\frac{α+β}{2}$+$\frac{π}{3}$)=$\frac{6}{5}$,f(β+$\frac{π}{3}$)=$\frac{8}{5}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)满足$f(x)=-f(x+\frac{3}{2})$,且f(1)=2,则f(2017)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为等差数列,且a2+a3+a10+a11=48,则a6+a7=(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设F为抛物线y2=2px(p>0)的焦点,A、B、C为该抛物线上三点,若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,且|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+$\overrightarrow{FC}$|=6,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,
AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)若 B1C1⊥平面CEC1,求二面角B1-CE-C1的余弦值;
(Ⅱ)在线段C1E上是否存在一点M,使得直线AM与平面ADD1A1所成角的正弦值为$\frac{{\sqrt{2}}}{6}$,若存在,求EM:MC1的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案