精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=|x+2|+|x-3|.
(Ⅰ)求不等式f(x)<6的解集;
(Ⅱ)若关于的不等式f(x)≥|2a+1|恒成立,求实数的取值范围.

分析 (Ⅰ)通过讨论x的范围,求出不等式的解集即可;(Ⅱ)求出f(x)的最小值,得到关于a的不等式,解出即可.

解答 解:(Ⅰ)不等式f(x)<6,即|x+2|+|x-3|<6,可化为
①$\left\{\begin{array}{l}{x≤-2}\\{-({x+2})-({x-3})<6}\end{array}$或②$\left\{\begin{array}{l}{-2<x<3}\\{({x+2})-({x-3})<6}\end{array}$或③$\left\{\begin{array}{l}{x≥3}\\{({x+2})+({x-3})<6}\end{array}$
解①得$-\frac{5}{2}<x≤-2$,解②得-2<x<3,解③得$3≤x<\frac{7}{2}$,
综合得$-\frac{5}{2}<x<\frac{7}{2}$,即原不等式的解集为$\{x|-\frac{5}{2}<x<\frac{7}{2}\}$.       …6分
(Ⅱ)因为f(x)=|x+2|+|x-3|≥|(x+2)-(x-3)|=5,
当且仅当-2≤x≤3时,等号成立,即f(x)min=5,
又关于的不等式f(x)≥|2a+1|恒成立,则|2a+1|≤5,
解得-3≤a≤2,即实数的取值范围为[-3,2].…12分.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{x+y≥0}\end{array}\right.$,z=(x+1)2+(y+2)2,则z的最小值为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设(  )
A.三个内角都不大于 60°B.三个内角至多有一个大于 60°
C.三个内角都大于60°D.三个内角至多有两个大于 60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过点(1,0)且与直线y=$\frac{1}{2}$x-1平行的直线方程是(  )
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的内角A,B,C的对边分别为a,b,c.已知C=45°,b=$\sqrt{2}$,c=2,则A=105°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校一个校园景观的主题为“托起明天的太阳”,其主体是一个半径为5米的球体,需设计一个透明的支撑物将其托起,该支撑物为等边圆柱形的侧面,厚度忽略不计.轴截面如图所示,设∠OAB=α.(注:底面直径和高相等的圆柱叫做等边圆柱.)
(1)用α表示圆柱的高;
(2)实践表明,当球心O和圆柱底面圆周上的点D的距离达到最大时,景观的观赏效果最佳,试求出OD最大值,并求出此时α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|2x-a|+|2x-1|.
(1)当a=3时,求关于x的不等式f(x)≤6的解集;
(2)当x∈R时,求实数f(x)≥a2-a-13的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.y=$\sqrt{lo{g}_{\frac{1}{2}}(3x-2)}$的定义域是($\frac{2}{3},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,a=7,b=4$\sqrt{3},c=\sqrt{13}$,则△ABC的最小角为$\frac{π}{6}$弧度.

查看答案和解析>>

同步练习册答案