精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若,证明:当时,

【答案】(1)见解析(2)见解析

【解析】

1)求函数导数,讨论a,根据导数的正负分析函数单调性即可;

2)要证上恒成立,即证明上恒成立,设,求函数导数,利用单调性求最值证明即可.

1)

时,

时,单调递减,

时,单调递增,

所以上单调递减,在上单调递增.

时,令 (*)

因为所以方程(*)有两根,由求根公式得 .

时,时,单调递减,

时,单调递增,

所以上单调递减,在上单调递增.

时,时,单调递增,当时,单调递减,

所以上单调递增,在上单调递减.

综上所述,当时,上单调递减,在上单调递增;

时,上单调递减,在上单调递增;

时,上单调递增,在上单调递减.

(2)当时,,由题意知,要证上恒成立,

即证明上恒成立.

,则

因为,所以(当且仅当时等号成立),

所以上单调递增,

所以上恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百度),将数据按照,,分成组,制成了如图所示的频率分布直方图:

(I)求直方图中的值;

56789月均用电量百厦

(Ⅱ)设该市有100万户居民,估计全市每户居民中月均用电量不低于6百度的人数,估计每户居民月均用电量的中位数,说明理由;

(Ⅲ)政府计划对月均用电量在4(百度)以下的用户进行奖励,月均用电量在内的用户奖励20元/月,月均用电量在内的用户奖励10元/月,月均用电量在内的用户奖励2元/月.若该市共有400万户居民,试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点为椭圆上一点,.

1)求椭圆C的方程;

2)已知两条互相垂直的直线经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图所示.

(1)分别写出终边落在OAOB位置上的角的集合.

(2)写出终边落在阴影部分(包括边界)的角的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某公司2001年至2017年新产品研发费用(单位:万元)的折线图.为了预测该公司2019年的新产品研发费用,建立了与时间变量的两个线性回归模型.根据2001年至2017年的数据(时间变量的值依次为1,2,…,17)建立模型①;根据2011年至2017年的数据(时间变量的值依次为1,2,…,7)建立模型②

(1)分别利用这两个模型,求该公司2019年的新产品研发费用的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCDA1B1C1D1为正方体,则以下结论:①BD∥平面CB1D1;②AC1BD;③AC1⊥平面CB1D1其中正确结论的个数是(    )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE△BCF均为正三角形,EF∥ABEF2,则该多面体的体积为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.

(1)判断函数是不是函数的“渐近函数”,说明理由;

(2)求证:函数不是函数的“渐近函数”;

(3)若函数,求证:当且仅当时,的“渐近函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额 (百元)的频率分布直方图如图所示:

(1)求网民消费金额的平均值和中位数

(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关;

合计

30

合计

45

附表:

.

查看答案和解析>>

同步练习册答案