精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,a3=5,S14=196,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n•an=2a,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)S14=
14(a1+a14)
2
=7(a3+a12)=196,解得a12=23,d=
a12-a3
12-3
=
23-5
9
=2,由此能求出an
(Ⅱ)由bn=2nan=(2n-1)•2n,利用错位相减法能求出数列{bn}的前n项和Tn
解答: 解:(Ⅰ)∵等差数列{an}的前n项和为Sn,a3=5,S14=196,
S14=
14(a1+a14)
2
=7(a3+a12)=196,
解得a12=23,
∴d=
a12-a3
12-3
=
23-5
9
=2,
∴an=a3+(n-3)d=5+(n-3)×2=2n-1.
(Ⅱ)∵bn=2nan=(2n-1)•2n
Tn=1•2+3•22+…+(2n-1)•2n,①
2Tn=1•22+3•23+…+(2n-1)•2n+1,②
①-②,得:-Tn=2+(23+24+…+2n+1)-(2n-1)•2n+1
=(2+22+23+24+…+2n+1)-4-(2n-1)•2n+1
=(2n-2-2)-4-(2n-1)•2n+1
=-(2n-3)•2n+1-6,
∴Tn=(2n-3)•2n+1+6,n∈N*
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)化简:
sin(540°+α)•cos(-α)
tan(α-180°)

(2)已知tanα=3,计算sin2α+sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a,b,c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量X为“|a-b|的取值”.
(Ⅰ)求随机变量X的分布列和数学期望E(X);
(Ⅱ)记事件A=“函数f(t)=2Xt+4在区间(-3,-
2
3
)上存在零点”,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α是第三象限角,cos(α-
2
)=
1
5
,求:f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-π-α)sin(-π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C的对边分别为a,b,c,且sin(B+C)=
4
5
,a=4
2
,b=5
(Ⅰ)求角B与边c的值;
(Ⅱ)求向量
BA
BC
方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆O1和圆O2的极坐标方程分别为ρ=2cosθ,ρ=-2sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1和圆O2交点的直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求已知α、β均为锐角,且cosα=
2
5
,sinβ=
3
10
,求角α-β.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?x∈R,x2+ax+2≥0,则¬p是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据定积分的几何意义,用定积分表示曲边形ADCB的面积S=
 

查看答案和解析>>

同步练习册答案