精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A,B,C的对边分别为a,b,c,且sin(B+C)=
4
5
,a=4
2
,b=5
(Ⅰ)求角B与边c的值;
(Ⅱ)求向量
BA
BC
方向上的投影.
考点:余弦定理,平面向量数量积的运算
专题:解三角形
分析:(Ⅰ)在锐角△ABC中,由条件利用正弦定理求得sinB的值,可得B的值;再利用余弦定理求得c的值.
(Ⅱ)向量
BA
BC
方向上的投影即|
BA
|•cosB=c•cos
π
4
,计算求得结果.
解答: 解:(Ⅰ)在锐角△ABC中,由sin(B+C)=sinA=
4
5
,利用正弦定理可得
a
sinA
=
b
sinB

4
2
4
5
=
5
sinB
,求得sinB=
2
2
,∴B=
π
4

再根据cosA=
3
5
,利用余弦定理可得 a2=b2+c2-2bc•cosA,即 32=25+c2-2×5×c×
3
5

求得c=-1 (舍去),或c=7.
(Ⅱ)向量
BA
BC
方向上的投影即|
BA
|•cosB=c•cos
π
4
=7×
2
2
=
7
2
2
点评:本题主要考查正弦定理和余弦定理的应用,一个向量在另一个向量上的投影的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ksin(ωx+φ),(k>0,ω>0,|φ|<
π
2
)的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -2 0 2 0 -2 0 2
(1)根据表格提供的数据求函数f(x)的解析式;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,根据(1)的结果,若f(
A
2
)=-1,且a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF.
(1)求证:EF⊥A1C1
(2)在棱C1C上确定一点G,使A、E、G、F四点共面,并求此时C1G的长;
(3)求几何体ABFED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=x+m与曲线x2+4y2-4=0交于A,B两点,若△AOB的面积为1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a-
1
a
=3,求a2+
1
a2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a3=5,S14=196,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n•an=2a,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2(a∈R).
(Ⅰ)求函数f(x)在点P(0,1)处的切线方程;
(Ⅱ)若函数f(x)为R上的单调递增函数,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

华山中学高中部今年新招了5名大学生,需要分到三个不同的年级,每个年级至少一名,共有多少种分配方案
 
(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(-1920°)=
 

查看答案和解析>>

同步练习册答案