精英家教网 > 高中数学 > 题目详情
10.A={x|x2-4x-5≤0},B={x||x|≤2},则A∩(∁RB)=(  )
A.[2,5]B.(2,5]C.[-1,2]D.[-1,2)

分析 化简A、B,求出∁RB,再计算A∩(∁RB).

解答 解:∵A={x|x2-4x-5≤0}={x|-1≤x≤5}=[-1,5],
B={x||x|≤2}={x|-2≤x≤2}=[-2,2],
∴∁RB=(-∞,-2)∪(2,+∞),
∴A∩(∁RB)=(2,5].
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为点M.设$\overrightarrow{{C_1}{D_1}}=\overrightarrow a$,$\overrightarrow{{C_1}{B_1}}=\overrightarrow b$,$\overrightarrow{{C_1}C}=\overrightarrow c$,用$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$表示向量$\overrightarrow{M{B_1}}$,则$\overrightarrow{M{B}_{1}}$=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$-$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的长轴长为4,离心率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P为椭圆$\frac{x^2}{2}+{y^2}=1$上任意一点,过点P的直线y=kx+m交椭圆C于A,B两点,射线PO交椭圆C于点Q(O为坐标原点).(i)是否存在常数λ,使得S△ABQ=λS△ABO恒成立?若存在,求出λ的值,否则,请说明理由;
(ii)求△ABQ面积的最大值,并写出取最大值时k与m的等量关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆的左、右焦点分别是F1、F2,点M为椭圆上的一个动点,△MF1F2面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P为椭圆上一点,PF1与y轴相交于Q,且$\overrightarrow{{F}_{1}P}$=2$\overrightarrow{{F}_{1}Q}$.若PF1与椭圆相交于另一点R,求△PRF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设A,B是椭圆$\frac{{x}^{2}}{2}$+y2=1上的两个动点,O是坐标原点,且AO⊥BO,作OP⊥AB,垂足为P,则|OP|=(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示的程序框图输出的结果是(  )
A.s=31B.s=17C.s=11D.s=14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,点P(0,1)在短轴CD上,且$\overrightarrow{PC}\overrightarrow{•PD}=-1$.
(I)求出椭圆E的方程;
(Ⅱ)过点P的直线l和椭圆E交于A,B两点.
(i)若$\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AP}$,求直线l的方程;
(ii)已知点Q(0,2),证明对于任意直线l,$\frac{{\left|{QA}\right|}}{{\left|{QB}\right|}}=\frac{{\left|{PA}\right|}}{{\left|{PB}\right|}}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点M(a,b)在圆O:x2+y2=4外,则直线ax+by=4与圆O的位置关系是(  )
A.相离B.相切C.相交D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.
(1)证明:CE⊥AB;
(2)若二面角P-CD-A为60°,求直线CE与平面PAB所成角的正切值;
(3)若AB=kPA,求平面PCD与平面PAB所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案