精英家教网 > 高中数学 > 题目详情
lim
x→0
ex-x-cosx
x4-x2
考点:极限及其运算
专题:函数的性质及应用
分析:由条件利用罗比达法则求所给式子的极限.
解答: 解:
lim
x→0
ex-x-cosx
x4-x2
=
lim
x→0
 
ex-1+sinx
4x3-2x
=
lim
x→0
 
ex+cosx
12x2-2
=
1+1
0-2
=-1.
点评:本题主要考查利用罗比达法则求函数的极限,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系下,曲线C1
x=2t+2a
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+2sinθ
(θ为参数).若曲线C1,C2有公共点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(Ⅰ)应收集多少位女生样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上奇函数,当满足x≤y且xy≠0时有f(x+y)=3f(x)+4f(y)+3x2-5y2+2x+3y+1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,点(n,Sn)在曲线y=x2-11x上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
an+12
2n+1
,数列{bn}的前n项和为Tn,若2Tn>m-2对n∈N*恒成立,求最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.四面体B1-BCD的体积是2,求异面直线DB1与CC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
lnx-mx,g(x)=x-
a
x
(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若m=
1
2e2
,对?x1,x2∈[2,2e2]都有g(x1)≥f(x2)成立,求实数a的取值范围;
(Ⅲ)证明:22ln2+23ln3+24ln4+…+2nlnn<4+(n-2)×2n+1(n≥2且n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2+4x+a>1-2x2在a∈[-2,2]时恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

{α|α=
k
2
π-
π
5
,k∈Z}∩{α|-π<α<π}=
 

查看答案和解析>>

同步练习册答案