精英家教网 > 高中数学 > 题目详情
在平面直角坐标系下,曲线C1
x=2t+2a
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+2sinθ
(θ为参数).若曲线C1,C2有公共点,则实数a的取值范围是
 
考点:直线的参数方程,圆的参数方程
专题:坐标系和参数方程
分析:第一步:将曲线C1,C2的参数方程均化为普通方程;
第二步:由曲线C1,C2有公共点知,两方程有公共解,联立两方程,消去y或x,得到关于x或y的一元二次方程,由△≥0即可得a的取值范围.
解答: 解:由
x=2t+2a
y=-t
,消去参数t,整理得x=2a-2y,…①
x=2cosθ
y=2+2sinθ
及cos2θ+sin2θ=1,消去参数θ,得x2+(y-2)2=4,…②
将①代入②中,消去x并整理得5y2-(8a+4)y+4a2=0,
由于曲线C1,C2有公共点,所以上面关于y的一元二次方程有实数解,
所以△≥0,即(8a+4)2-4×5×4a2≥0,
整理得a2-4a-1≤0,解得2-
5
≤a≤2+
5

故答案为2-
5
≤a≤2+
5
点评:1.本题也可以利用几何法求解,其思路是:化为普通方程后,由圆心到直线的距离小于或等于圆的半径,解不等式即可.
2.对于两曲线的公共点问题,一般从几何和代数两方面考虑,两种方法各有其优缺点,代数方法具有一般性,但有时计算量比较大;几何方法计算量一般较少,但有时很难找到恰当的式子来表示图形的位置关系,应根据图形的几何特征具体对待.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin(π+α)=
1
2
,则α角的集合是(  )
A、{α|α=2kπ+
7
6
π}
B、{α|α=2kπ-
π
6
}
C、{α|α=2kπ+
π
6
或2kπ+
5
6
π}
D、{α|α=2kπ-
π
6
或2kπ-
5
6
π}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=xa,y=bx,y=logcx中,其中有两个函数具有相反的单调性,另外一个函数是偶函数,如图所示这三个函数部分图象交点A的横坐标是0.65,交点B的横坐标是1.3,则当x∈(0.65,1.3)时,它们的大小关系是(  )
A、xa>bx>logcx
B、bx>logcx>xa
C、logcx>xa>bx
D、bx>xa>logcx

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
x→0
1
x2
-
1
xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=(
1
2
)
x2-2x+2
(0≤x≤3)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

先阅读下列①、②两个问题,再解决后面的(Ⅰ)、(Ⅱ)两个小题:
①已知a1,a2∈R,且a1+a2=1,求证:a12+22
1
2

证明:构造函数f(x)=(x-a12+(x-a22,则f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2x+a12+a22,因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22
1
2

②同理可证若a1,a2,a3∈R,且a1+a2+a3=1,则a12+a22+a32
1
3

(Ⅰ)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(Ⅱ)参考上述证法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=2py(p>0)上纵坐标为2的点到焦点的距离为3.
(1)求p的值;
(2)若A,B两点在抛物线上,满足
AM
+
BM
=
0
,其中M(2,2).则抛物线上是否存在异于A,B的点C,使得经过A、B、C三点的圆和抛物线在点C处有相同的切线?若存在,求出点C的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,向量
a
=(
Sn
,1),
b
=(an+1,2)(n∈N*)满足
a
b

(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式为bn=
an
an+t
(t∈N*),若b1,b2,bm(m≥3,m∈N*)成等差数列,求t和m的值;
(3)如果等比数列{cn}满足c1=a1,公比q满足0<q<
1
2
,且对任意正整数k,ck-(ck+1+ck+2)仍是该数列中的某一项,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
x→0
ex-x-cosx
x4-x2

查看答案和解析>>

同步练习册答案