精英家教网 > 高中数学 > 题目详情
lim
x→0
1
x2
-
1
xsinx
考点:极限及其运算
专题:函数的性质及应用
分析:多次利用罗比达法则求函数的极限,从而得到结果.
解答: 解:
lim
x→0
1
x2
-
1
xsinx
)=
lim
x→0
 
sinx-x
x2sinx
=
lim
x→0
 
cosx-1
2xsinx+x2cosx
=
lim
x→0
 
-sinx
2sinx+2xcosx+2xcosx-x2sinx

=
lim
x→0
 
-cosx
2cosx+4cosx-4xsinx-2xsinx-x2cosx
=
lim
x→0
 
-cosx
6cosx-6xsinx-x2cosx
=
-1
6-0-0
=-
1
6
点评:本题主要考查利用罗比达法则求函数的极限,正弦函数、余弦函数的导数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z=
a(a+2)
a-1
+(a2+2a-3)i(a∈R)为纯虚数,则a的值为(  )
A、a=0
B、a=0,且a≠-1
C、a=0,或a=-2
D、a≠1,或a≠-3

查看答案和解析>>

科目:高中数学 来源: 题型:

2014°是第(  )象限角.
A、一B、二C、三D、四

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-xcsx的图象,只可能是下列各图中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

根据条件分别求出f(x)的解析式:
(1)f(x-2)=2x-
x

(2)f(x2+1)=x4+3x2+4;
(3)f(x)满足f(x)+2f(
1
x
)=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x≥-13,关于x的不等式|x-3|-|2x+10|+x+15-2|a+13|≥0的解集不为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系下,曲线C1
x=2t+2a
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+2sinθ
(θ为参数).若曲线C1,C2有公共点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x4+5x3-27x2-101x-70的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上奇函数,当满足x≤y且xy≠0时有f(x+y)=3f(x)+4f(y)+3x2-5y2+2x+3y+1,求f(x)的表达式.

查看答案和解析>>

同步练习册答案