精英家教网 > 高中数学 > 题目详情
求函数y=(
1
2
)
x2-2x+2
(0≤x≤3)的值域.
考点:指数函数的定义、解析式、定义域和值域
专题:函数的性质及应用
分析:利用换元法,将函数转化为指数函数和二次函数,利用二次函数和指数函数的性质即可得到结论
解答: 解:设t=x2-2x+2,则t=(x-1)2+1,
∵0≤x≤3,
∴1≤t≤5,
∵y=(
1
2
t是减函数,1≤t≤5,
∴(
1
2
5≤y≤
1
2

1
32
≤y≤
1
2

则函数的值域为[
1
32
1
2
].
点评:本题主要考查函数值域的计算,利用换元法将函数转化为二次函数和指数函数是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(m,n)在曲线
x=
6
cosα
y=
6
sinα
(α为参数)上,点(x,y)在曲线
x=
24
cosβ
y=
24
sinβ
(β为参数)上,则mx+ny的最大值为(  )
A、12B、15C、24D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形纸片ABCD中,BC=4,AB=3,点P是BC边上的动点,现将△PCD沿PD翻折,得到△PFD;作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

根据条件分别求出f(x)的解析式:
(1)f(x-2)=2x-
x

(2)f(x2+1)=x4+3x2+4;
(3)f(x)满足f(x)+2f(
1
x
)=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一批金属零件,其中80%的重量不少于3公斤,现从这批零件中任取100个,试求其中至少有30个重量少于3公斤的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系下,曲线C1
x=2t+2a
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+2sinθ
(θ为参数).若曲线C1,C2有公共点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
sin2x•cos
π
6
+
1
2
cos2xsin
π
6

(1)函数f(x)的最小正周期,及最大值;
(2)求f(x)的单调递增区间;
(3)若f(
α
2
)=
1
2
,求sin(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-1)=0,则不等式f(x)•g(x)>0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,点(n,Sn)在曲线y=x2-11x上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
an+12
2n+1
,数列{bn}的前n项和为Tn,若2Tn>m-2对n∈N*恒成立,求最大正整数m的值.

查看答案和解析>>

同步练习册答案