精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
2
sin2x•cos
π
6
+
1
2
cos2xsin
π
6

(1)函数f(x)的最小正周期,及最大值;
(2)求f(x)的单调递增区间;
(3)若f(
α
2
)=
1
2
,求sin(π+α)的值.
考点:三角函数中的恒等变换应用,两角和与差的正弦函数,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)先利用两角和公式对函数解析式化简,进而根据正弦函数的性质求得函数的最小正周期.
(2)根据正弦函数的性质和图象求得函数的单调增区间.
(3)先根据题意求得α的值,代入sin(π+α)求得答案.
解答: 解:f(x)=
1
2
(sin2xcos
π
6
+cos2xsin
π
6
)
=
1
2
sin(2x+
π
6
)

(1)函数f(x)的最小正周期为T=
2
,最大值为
1
2

(2)由-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ,k∈z
得,-
π
3
+kπ≤x≤
π
6
+kπ,k∈z

∴f(x)的单调递增区间为[-
π
3
+kπ,
π
6
+kπ],k∈Z,
(3)由f(
α
2
)=
1
2
sin(α+
π
6
)=1

所以α=
π
3
+2kπ,k∈z

sin(π+α)=-sin(
π
3
+2kπ)=-sin
π
3
=-
3
2
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.考查了学生对三角函数基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,角A,B,C所对的边分别是a,b,c,a=2csinA,则C为(  )
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D为同一球面上的四点,且连接每点间的线段长都等于2,则球心O到平面BCD的距离等于(  )
A、
6
3
B、
6
6
C、
6
12
D、
6
18

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=(
1
2
)
x2-2x+2
(0≤x≤3)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,求△ABC中的未知量.
(1)已知△ABC中,B=45°,C=75°,b=2,求a边长;
(2)已知b=4,c=8,B=30°,求a边.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=2py(p>0)上纵坐标为2的点到焦点的距离为3.
(1)求p的值;
(2)若A,B两点在抛物线上,满足
AM
+
BM
=
0
,其中M(2,2).则抛物线上是否存在异于A,B的点C,使得经过A、B、C三点的圆和抛物线在点C处有相同的切线?若存在,求出点C的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,∠ABC=∠BCD=∠CDA=90°,设顶点A在底面BCD上的射影为E.
(1)求证:CD⊥面ADE
(2)求证:BC=DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

设k为整数,化简
sin(kπ-α)cos[(k-1)π-α]
sin[(k+1)π+α]cos(kπ+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

在(x2+x+1)n=D
 
0
n
x2n+D
 
1
n
x2n-1+D
 
2
n
x2n-2+…+D
 
2n-1
n
x+D
 
2n
n
(n∈N)的展开式中,把D
 
0
n
,D
 
1
n
,D
 
2
n
,…,D
 
2n
n
叫做三项式的n次系数列.
(Ⅰ)例如三项式的1次系数列是1,1,1,填空:
三项式的2次系数列是
 

三项式的3次系数列是
 

(Ⅱ)二项式(a+b)n(n∈N)的展开式中,系数可用杨辉三角形数阵表示,如下

①当0≤n≤4,n∈N时,类似杨辉三角形数阵表,请列出三项式的n次系数列的数阵表;
②由杨辉三角形数阵表中可得出性质:C
 
n
n+1
=C
 
n
n
+C
 
n-1
n
,类似的请用三项式的n次系数表示D
 
k+1
n+1
(1≤k≤2n-1,k∈N)(无须证明);
(Ⅲ)试用二项式系数(组合数)表示D
 
3
n

查看答案和解析>>

同步练习册答案