精英家教网 > 高中数学 > 题目详情
根据下列条件,求△ABC中的未知量.
(1)已知△ABC中,B=45°,C=75°,b=2,求a边长;
(2)已知b=4,c=8,B=30°,求a边.
考点:正弦定理
专题:解三角形
分析:(1)由条件利用三角形内角和公式求得A的值,再利用正弦定理求得a的值.
(2)由条件利用正弦定理求得sinC的值,可得C为直角,在理哦也难怪勾股定理求得a的值.
解答: 解:(1)∵已知△ABC中,B=45°,C=75°,b=2,由三角形内角和公式可得A=60°,
由正弦定理可得
a
sinA
=
b
sinB
,即
a
3
2
=
2
2
2
,求得a=
6

(2)已知△ABC中,∵已知b=4,c=8,B=30°,有正弦定理可得
b
sinB
=
c
sinC

4
1
2
=
8
sinC
,求得sinC=1,可得C=
π
2
,∴△ABC为直角三角形,
∴a=
c2-b2
=
64-16
=4
3
点评:本题主要考查三角形内角和公式、正弦定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列推理正确的是(  )
A、如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖
B、∵a>b,a>c,∴a-b>a-c
C、若a∈R+,ab<0,则
a
b
+
b
a
=-(
-a
b
+
-b
a
)≤2
(-
a
b
)•(-
b
a
)
=-2
D、若a,b∈R+,则lga+lgb≥2
lga•lgb

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1a2a3a4a5=32,且a11=8,则a7的值为(  )
A、4
B、-4
C、±4
D、±2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

有一批金属零件,其中80%的重量不少于3公斤,现从这批零件中任取100个,试求其中至少有30个重量少于3公斤的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x2-3x+2<0},B={x∈R|x>a或x<-a},全集U=R,则当a为何值时A?B成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
sin2x•cos
π
6
+
1
2
cos2xsin
π
6

(1)函数f(x)的最小正周期,及最大值;
(2)求f(x)的单调递增区间;
(3)若f(
α
2
)=
1
2
,求sin(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系中,圆O:ρ2+2ρcosθ-3=0的圆心到直线ρcosθ+ρsinθ-7=0的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

调查某桑场采桑员和辅助工关于桑毛虫皮炎发病情况结果如表:
采桑不采桑合计
患者人数1812
健康人数578
合计
(1)完成2×2列联表;
(2)利用2×2列联表的独立性检验估计,你是否有99%把握认为“患桑毛虫皮炎病与采桑”有关?
p(K2≥k0 0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(参考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中数学 来源: 题型:

在某市的人大贿选案中,经调查统计该市人大代表的受贿情况的频率分布直方图如图:其中受贿[10,20]万元的有10人.
(1)请探究在这次贿选案该市人大代表中有多少人没有受贿,及这次贿选案中人均受贿多少万元
(2)现从受贿40万元以上的代表中选两人调查受贿原因,求所选两人中恰有一人受贿超过50万元的概率.

查看答案和解析>>

同步练习册答案